-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathlba.jl
155 lines (134 loc) · 3.69 KB
/
lba.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
using Distributions, Parameters, DynamicHMC, LogDensityProblems, TransformVariables
using Random, StatsFuns
import Distributions: pdf,logpdf,rand
export LBA,pdf,logpdf,rand
Base.@kwdef struct LBA{T1,T2,T3,T4} <: ContinuousUnivariateDistribution
ν::T1
A::T2
k::T3
τ::T4
σ::Float64 = 1.0
end
Base.broadcastable(x::LBA) = Ref(x)
###
### simulation
###
function selectWinner(dt)
if any(x -> x > 0,dt)
mi, mv = 0, Inf
for (i, t) in enumerate(dt)
if (t > 0) && (t < mv)
mi = i
mv = t
end
end
else
return 1,-1.0
end
return mi,mv
end
function sampleDriftRates(ν,σ)
noPositive=true
v = similar(ν)
while noPositive
v = [rand(Normal(d,σ)) for d in ν]
any(x->x>0,v) ? noPositive=false : nothing
end
return v
end
function rand(d::LBA)
@unpack τ,A,k,ν,σ = d
b=A+k
N = length(ν)
v = sampleDriftRates(ν,σ)
a = rand(Uniform(0,A),N)
dt = @. (b-a)/v
choice,mn = selectWinner(dt)
rt = τ .+ mn
return choice,rt
end
function rand(d::LBA,N::Int)
choice = fill(0,N)
rt = fill(0.0,N)
for i in 1:N
choice[i], rt[i] = rand(d)
end
return (choice = choice, rt = rt)
end
function simulateLBA(;Nd,v=[1.0,1.5,2.0],A=.8,k=.2,tau=.4,kwargs...)
return (rand(LBA(ν=v,A=A,k=k,τ=tau),Nd)...,N=Nd,Nc=length(v))
end
###
### log densities
###
function logpdf(d::LBA,data::T) where {T<:NamedTuple}
return sum(logpdf.(d,data...))
end
logpdf(dist::LBA,data::Array{<:Tuple,1}) = sum(d -> logpdf(dist, d), data)
function logpdf(d::LBA,c,rt)
@unpack τ,A,k,ν,σ = d
b = A + k
logden = 0.0
rt < τ && return -Inf
for (i,v) in enumerate(ν)
if c == i
logden += logdens(d,v,rt)
else
logden += log_tail_cumulative(d,v,rt)
end
end
logden - log1mexp(logpnegative(d))
end
logpdf(d::LBA,data::Tuple) = logpdf(d,data...)
function logdens(d::LBA, v, rt)
@unpack τ,A,k,ν,σ = d
dt = rt-τ; b=A+k
n1 = (b-A-dt*v)/(dt*σ)
n2 = (b-dt*v)/(dt*σ)
# FIXME rewrite this part nicer
Δcdfs = cdf(Normal(0,1),n2) - cdf(Normal(0,1),n1)
Δpdfs = pdf(Normal(0,1),n1) - pdf(Normal(0,1),n2)
-log(A) + logaddexp(log(σ) + log(Δpdfs), log(v) * log(Δcdfs))
end
function log_tail_cumulative(d::LBA,v,rt)
@unpack τ,A,k,ν,σ = d
dt = rt-τ; b=A+k
n1 = (b-A-dt*v)/(dt*σ)
n2 = (b-dt*v)/(dt*σ)
log(-((b-A-dt*v)/A)*cdf(Normal(0,1),n1) +
((b-dt*v)/A)*cdf(Normal(0,1),n2) - ((dt*σ)/A)*pdf(Normal(0,1),n1) +
((dt*σ)/A)*pdf(Normal(0,1),n2))
end
function logpnegative(d::LBA)
@unpack ν,σ=d
sum(v -> logcdf(Normal(0,1),-v/σ), ν)
end
struct LBAProb{T}
data::T
N::Int
Nc::Int
end
function (problem::LBAProb)(θ)
@unpack data=problem
@unpack v,A,k,tau=θ
d = LBA(ν=v,A=A,k=k,τ=tau)
minRT = minimum(last, data)
logprior = (sum(logpdf.(TruncatedNormal(0,3,0,Inf), v)) +
logpdf(TruncatedNormal(.8,.4,0,Inf),A) +
logpdf(TruncatedNormal(.2,.3,0,Inf),k) +
logpdf(TruncatedNormal(.4,.1,0,minRT), tau))
loglikelihood = logpdf(d, data)
end
function sampleDHMC(choice,rt,N,Nc,nsamples)
data = [(c,r) for (c,r) in zip(choice,rt)]
return sampleDHMC(data,N,Nc,nsamples)
end
N = 10
data = simulateLBA(Nd = N)
p = LBAProb(collect(zip(data.choice, data.rt)), N, data.Nc)
p((v=fill(.5,data.Nc),A=.8,k=.2,tau=.4))
trans = as((v=as(Array,asℝ₊,data.Nc),A=asℝ₊,k=asℝ₊,tau=asℝ₊))
P = TransformedLogDensity(trans, p)
∇P = ADgradient(:ForwardDiff, P)
results = mcmc_with_warmup(Random.GLOBAL_RNG, ∇P, 1000)
posterior = trans.(results.chain)