-
Notifications
You must be signed in to change notification settings - Fork 372
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
1 changed file
with
87 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,87 @@ | ||
# Tutorial for finetuning on a custom dataset | ||
|
||
## Step 1. Convert the custom dataset to coco format. | ||
|
||
- The coco format can be found in [Link](https://cocodataset.org/#format-data). Specifically, the coco annotation file (`.json`) includes three necessary feilds, *i.e.*, image, annotation, categories. A toy sample (named `toy_sample.json`) is provided below: | ||
|
||
```json | ||
{ | ||
"categories": | ||
[{ | ||
"supercategory": "person", | ||
"id": 1, | ||
"name": "person" | ||
}], | ||
"images": | ||
[{ | ||
"license": 1, | ||
"file_name": "000000425226.jpg", | ||
"coco_url": "http://images.cocodataset.org/val2017/000000425226.jpg", | ||
"height": 640, | ||
"width": 480, | ||
"date_captured": | ||
"2013-11-14 21:48:51", | ||
"flickr_url": | ||
"http://farm5.staticflickr.com/4055/4546463824_bc40e0752b_z.jpg", | ||
"id": 1 | ||
}], | ||
"annotations": | ||
[{ | ||
"image_id": 1, | ||
"category_id": 1, | ||
"segmentation": [], | ||
"area": 47803.279549999985, | ||
"iscrowd": 0, | ||
"bbox": [73.35, 206.02, 300.58, 372.5], | ||
"id": 1 | ||
}] | ||
} | ||
``` | ||
|
||
- Then we can organize the custom dataset (including images and annotations) as follows: | ||
``` | ||
├── Custom_coco | ||
│ ├── annotations | ||
│ │ └── toy_sample.json | ||
│ ├── images | ||
│ │ └── 000000425226.jpg | ||
``` | ||
|
||
## Step2. Link custom dataset into DAMO-YOLO | ||
- Link your dataset into `datasets`. | ||
``` | ||
ln -s path/to/Custom_coco datasets/toy_sample | ||
``` | ||
|
||
- Add the custom dataset into `damo/config/paths_catalog.py`. Note, the added dataset should contain **coco** in their names to declare the dataset format, *e.g.*, here we use `sample_train_coco` and `sample_test_coco`. | ||
``` | ||
'sample_train_coco': { | ||
'img_dir': 'toy_sample/images', | ||
'ann_file': 'toy_sample/annotations/toy_sample.json' | ||
}, | ||
'sample_test_coco': { | ||
'img_dir': 'toy_sample/images', | ||
'ann_file': 'toy_sample/annotations/toy_sample.json' | ||
}, | ||
``` | ||
|
||
|
||
## Step3. Modify the config file. | ||
In this tutorial, we finetune on DAMO-YOLO-Tiny as example. | ||
- Download the DAMO-YOLO-Tiny torch model from [Model Zoo](https://github.com/tinyvision/DAMO-YOLO#Model-Zoo) | ||
- Add the following pretrained model path into `damoyolo_tinynasL20_T.py`. | ||
``` | ||
self.train.finetune_path='path/to/damoyolo_tinynasL20_T.pth' | ||
``` | ||
- Modify the custom dataset in config file. Change `coco_2017_train` and `coco_2017_test` in `damoyolo_tinynasL20_T.py` to `sample_train_coco` and `sample_test_coco` respectively. | ||
https://github.com/tinyvision/DAMO-YOLO/blob/6e38813220900955d0f6138429c91a33a79c922f/configs/damoyolo_tinynasL20_T.py#L33-L34 | ||
|
||
- Modify the category number in config file. Change `'num_classes': 80` in `damoyolo_tinynasL20_T.py` to `'num_classes': 1`. Because in our toy sample, there is only one category, so we set `num_classes` to 1. | ||
https://github.com/tinyvision/DAMO-YOLO/blob/6e38813220900955d0f6138429c91a33a79c922f/configs/damoyolo_tinynasL20_T.py#L64-L66 | ||
|
||
## Step4. Finetune on custom dataset | ||
You can run the finetuning with the following code: | ||
``` | ||
python -m torch.distributed.launch --nproc_per_node=8 tools/train.py -f configs/damoyolo_tinynasL20_T.py | ||
``` | ||
|