Skip to content

Commit

Permalink
add some aggreation for feature engineering use with reference
Browse files Browse the repository at this point in the history
  • Loading branch information
thompson0012 committed Jul 15, 2022
1 parent c38c83d commit 2a3c324
Showing 1 changed file with 367 additions and 0 deletions.
367 changes: 367 additions & 0 deletions pyemits/common/stats.py
Original file line number Diff line number Diff line change
Expand Up @@ -201,3 +201,370 @@ def cal_reg_metrics(y_true: np.ndarray,
metrics_result[metric] = getattr(RegressionMetrics, metric)(y_true, y_predicted)

return metrics_result


class Aggregater:
"""
inspired from the following author in kaggle
https://www.kaggle.com/code/lucasmorin/amex-feature-engineering-2-aggreg-functions
"""

def median(x):
return np.median(x)

def variation_coefficient(x):
mean = np.mean(x)
if mean != 0:
return np.std(x) / mean
else:
return np.nan

def variance(x):
return np.var(x)

def skewness(x):
if not isinstance(x, pd.Series):
x = pd.Series(x)
return pd.Series.skew(x)

def kurtosis(x):
if not isinstance(x, pd.Series):
x = pd.Series(x)
return pd.Series.kurtosis(x)

def standard_deviation(x):
return np.std(x)

def large_standard_deviation(x):
if (np.max(x) - np.min(x)) == 0:
return np.nan
else:
return np.std(x) / (np.max(x) - np.min(x))

def variation_coefficient(x):
mean = np.mean(x)
if mean != 0:
return np.std(x) / mean
else:
return np.nan

def variance_std_ratio(x):
y = np.var(x)
if y != 0:
return y / np.sqrt(y)
else:
return np.nan

def ratio_beyond_r_sigma(x, r):
if x.size == 0:
return np.nan
else:
return np.sum(np.abs(x - np.mean(x)) > r * np.asarray(np.std(x))) / x.size

def range_ratio(x):
mean_median_difference = np.abs(np.mean(x) - np.median(x))
max_min_difference = np.max(x) - np.min(x)
if max_min_difference == 0:
return np.nan
else:
return mean_median_difference / max_min_difference

def has_duplicate_max(x):
return np.sum(x == np.max(x)) >= 2

def has_duplicate_min(x):
return np.sum(x == np.min(x)) >= 2

def has_duplicate(x):
return x.size != np.unique(x).size

def count_duplicate_max(x):
return np.sum(x == np.max(x))

def count_duplicate_min(x):
return np.sum(x == np.min(x))

def count_duplicate(x):
return x.size - np.unique(x).size

def sum_values(x):
if len(x) == 0:
return 0
return np.sum(x)

class SeriesAggregator:

def log_return(list_stock_prices):
return np.log(list_stock_prices).diff()

def realized_volatility(series):
return np.sqrt(np.sum(series ** 2))

def realized_abs_skew(series):
return np.power(np.abs(np.sum(series ** 3)), 1 / 3)

def realized_skew(series):
return np.sign(np.sum(series ** 3)) * np.power(np.abs(np.sum(series ** 3)), 1 / 3)

def realized_vol_skew(series):
return np.power(np.abs(np.sum(series ** 6)), 1 / 6)

def realized_quarticity(series):
return np.power(np.sum(series ** 4), 1 / 4)

def count_unique(series):
return len(np.unique(series))

def count(series):
return series.size

# drawdons functions are mine
def maximum_drawdown(series):
series = np.asarray(series)
if len(series) < 2:
return 0
k = series[np.argmax(np.maximum.accumulate(series) - series)]
i = np.argmax(np.maximum.accumulate(series) - series)
if len(series[:i]) < 1:
return np.NaN
else:
j = np.max(series[:i])
return j - k

def maximum_drawup(series):
series = np.asarray(series)
if len(series) < 2:
return 0

series = - series
k = series[np.argmax(np.maximum.accumulate(series) - series)]
i = np.argmax(np.maximum.accumulate(series) - series)
if len(series[:i]) < 1:
return np.NaN
else:
j = np.max(series[:i])
return j - k

def drawdown_duration(series):
series = np.asarray(series)
if len(series) < 2:
return 0

k = np.argmax(np.maximum.accumulate(series) - series)
i = np.argmax(np.maximum.accumulate(series) - series)
if len(series[:i]) == 0:
j = k
else:
j = np.argmax(series[:i])
return k - j

def drawup_duration(series):
series = np.asarray(series)
if len(series) < 2:
return 0

series = -series
k = np.argmax(np.maximum.accumulate(series) - series)
i = np.argmax(np.maximum.accumulate(series) - series)
if len(series[:i]) == 0:
j = k
else:
j = np.argmax(series[:i])
return k - j

def max_over_min(series):
if len(series) < 2:
return 0
if np.min(series) == 0:
return np.nan
return np.max(series) / np.min(series)

def mean_n_absolute_max(x, number_of_maxima=1):
""" Calculates the arithmetic mean of the n absolute maximum values of the time series."""
assert (
number_of_maxima > 0
), f" number_of_maxima={number_of_maxima} which is not greater than 1"

n_absolute_maximum_values = np.sort(np.absolute(x))[-number_of_maxima:]

return np.mean(n_absolute_maximum_values) if len(x) > number_of_maxima else np.NaN

def count_above(x, t):
if len(x) == 0:
return np.nan
else:
return np.sum(x >= t) / len(x)

def count_below(x, t):
if len(x) == 0:
return np.nan
else:
return np.sum(x <= t) / len(x)

# number of valleys = number_peaks(-x, n)
def number_peaks(x, n):
"""
Calculates the number of peaks of at least support n in the time series x. A peak of support n is defined as a
subsequence of x where a value occurs, which is bigger than its n neighbours to the left and to the right.
"""
x_reduced = x[n:-n]

res = None
for i in range(1, n + 1):
result_first = x_reduced > _roll(x, i)[n:-n]

if res is None:
res = result_first
else:
res &= result_first

res &= x_reduced > _roll(x, -i)[n:-n]
return np.sum(res)

def mean_abs_change(x):
return np.mean(np.abs(np.diff(x)))

def mean_change(x):
x = np.asarray(x)
return (x[-1] - x[0]) / (len(x) - 1) if len(x) > 1 else np.NaN

def mean_second_derivative_central(x):
x = np.asarray(x)
return (x[-1] - x[-2] - x[1] + x[0]) / (2 * (len(x) - 2)) if len(x) > 2 else np.NaN

def root_mean_square(x):
return np.sqrt(np.mean(np.square(x))) if len(x) > 0 else np.NaN

def absolute_sum_of_changes(x):
return np.sum(np.abs(np.diff(x)))

def longest_strike_below_mean(x):
if not isinstance(x, (np.ndarray, pd.Series)):
x = np.asarray(x)
return np.max(_get_length_sequences_where(x < np.mean(x))) if x.size > 0 else 0

def longest_strike_above_mean(x):
if not isinstance(x, (np.ndarray, pd.Series)):
x = np.asarray(x)
return np.max(_get_length_sequences_where(x > np.mean(x))) if x.size > 0 else 0

def count_above_mean(x):
m = np.mean(x)
return np.where(x > m)[0].size

def count_below_mean(x):
m = np.mean(x)
return np.where(x < m)[0].size

def last_location_of_maximum(x):
x = np.asarray(x)
return 1.0 - np.argmax(x[::-1]) / len(x) if len(x) > 0 else np.NaN

def first_location_of_maximum(x):
if not isinstance(x, (np.ndarray, pd.Series)):
x = np.asarray(x)
return np.argmax(x) / len(x) if len(x) > 0 else np.NaN

def last_location_of_minimum(x):
x = np.asarray(x)
return 1.0 - np.argmin(x[::-1]) / len(x) if len(x) > 0 else np.NaN

def first_location_of_minimum(x):
if not isinstance(x, (np.ndarray, pd.Series)):
x = np.asarray(x)
return np.argmin(x) / len(x) if len(x) > 0 else np.NaN

# Test non-consecutive non-reoccuring values ?
def percentage_of_reoccurring_values_to_all_values(x):
if len(x) == 0:
return np.nan
unique, counts = np.unique(x, return_counts=True)
if counts.shape[0] == 0:
return 0
return np.sum(counts > 1) / float(counts.shape[0])

def percentage_of_reoccurring_datapoints_to_all_datapoints(x):
if len(x) == 0:
return np.nan
if not isinstance(x, pd.Series):
x = pd.Series(x)
value_counts = x.value_counts()
reoccuring_values = value_counts[value_counts > 1].sum()
if np.isnan(reoccuring_values):
return 0

return reoccuring_values / x.size

def sum_of_reoccurring_values(x):
unique, counts = np.unique(x, return_counts=True)
counts[counts < 2] = 0
counts[counts > 1] = 1
return np.sum(counts * unique)

def sum_of_reoccurring_data_points(x):
unique, counts = np.unique(x, return_counts=True)
counts[counts < 2] = 0
return np.sum(counts * unique)

def ratio_value_number_to_time_series_length(x):
if not isinstance(x, (np.ndarray, pd.Series)):
x = np.asarray(x)
if x.size == 0:
return np.nan

return np.unique(x).size / x.size

def abs_energy(x):
if not isinstance(x, (np.ndarray, pd.Series)):
x = np.asarray(x)
return np.dot(x, x)

def quantile(x, q):
if len(x) == 0:
return np.NaN
return np.quantile(x, q)

# crossing the mean ? other levels ?
def number_crossing_m(x, m):
if not isinstance(x, (np.ndarray, pd.Series)):
x = np.asarray(x)
# From https://stackoverflow.com/questions/3843017/efficiently-detect-sign-changes-in-python
positive = x > m
return np.where(np.diff(positive))[0].size

def absolute_maximum(x):
return np.max(np.absolute(x)) if len(x) > 0 else np.NaN

def value_count(x, value):
if not isinstance(x, (np.ndarray, pd.Series)):
x = np.asarray(x)
if np.isnan(value):
return np.isnan(x).sum()
else:
return x[x == value].size

def range_count(x, min, max):
return np.sum((x >= min) & (x < max))

def mean_diff(x):
return np.nanmean(np.diff(x.values))

base_stats = ['mean', 'sum', 'size', 'count', 'std', 'first', 'last', 'min', 'max', median, skewness, kurtosis]
higher_order_stats = [abs_energy, root_mean_square, sum_values, realized_volatility, realized_abs_skew,
realized_skew, realized_vol_skew, realized_quarticity]
additional_quantiles = [quantile_01, quantile_025, quantile_075, quantile_09]
other_min_max = [absolute_maximum, max_over_min]
min_max_positions = [last_location_of_maximum, first_location_of_maximum, last_location_of_minimum,
first_location_of_minimum]
peaks = [number_peaks_2, mean_n_absolute_max_2, number_peaks_5, mean_n_absolute_max_5, number_peaks_10,
mean_n_absolute_max_10]
counts = [count_unique, count, count_above_0, count_below_0, value_count_0, count_near_0]
reoccuring_values = [count_above_mean, count_below_mean, percentage_of_reoccurring_values_to_all_values,
percentage_of_reoccurring_datapoints_to_all_datapoints, sum_of_reoccurring_values,
sum_of_reoccurring_data_points, ratio_value_number_to_time_series_length]
count_duplicate = [count_duplicate, count_duplicate_min, count_duplicate_max]
variations = [mean_diff, mean_abs_change, mean_change, mean_second_derivative_central, absolute_sum_of_changes,
number_crossing_0]
ranges = [variance_std_ratio, ratio_beyond_01_sigma, ratio_beyond_02_sigma, ratio_beyond_03_sigma,
large_standard_deviation, range_ratio]

0 comments on commit 2a3c324

Please sign in to comment.