-
Notifications
You must be signed in to change notification settings - Fork 8
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
3 changed files
with
335 additions
and
91 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,4 +1,5 @@ | ||
|
||
from .gpr import GPR | ||
from .sgpr import SGPR | ||
from .svgp import SVGP | ||
from .svgp import SVGP | ||
from .vgp import VGP |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,226 @@ | ||
# Copyright 2016 James Hensman, Valentine Svensson, alexggmatthews, fujiisoup | ||
# Copyright 2017 Thomas Viehmann | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
import numpy | ||
import torch | ||
from torch.autograd import Variable | ||
|
||
from .. import conditionals | ||
from .. import kullback_leiblers | ||
from .. import parameter | ||
from .. import mean_functions | ||
|
||
from .model import GPModel | ||
|
||
|
||
class VGP(GPModel): | ||
""" | ||
This method approximates the Gaussian process posterior using a multivariate Gaussian. | ||
The idea is that the posterior over the function-value vector F is | ||
approximated by a Gaussian, and the KL divergence is minimised between | ||
the approximation and the posterior. | ||
This implementation is equivalent to svgp with X=Z, but is more efficient. | ||
The whitened representation is used to aid optimization. | ||
The posterior approximation is | ||
.. math:: | ||
q(\\mathbf f) = N(\\mathbf f \\,|\\, \\boldsymbol \\mu, \\boldsymbol \\Sigma) | ||
""" | ||
|
||
def __init__(self, X, Y, kern, likelihood, | ||
mean_function=None, | ||
num_latent=None, | ||
**kwargs): | ||
""" | ||
X is a data matrix, size N x D | ||
Y is a data matrix, size N x R | ||
kern, likelihood, mean_function are appropriate GPflow objects | ||
""" | ||
|
||
super(VGP, self).__init__(X, Y, kern, likelihood, mean_function, **kwargs) | ||
self.num_data = X.size(0) | ||
self.num_latent = num_latent or Y.size(1) | ||
|
||
self.q_mu = parameter.Param(self.X.data.new(self.num_data, self.num_latent).zero_()) | ||
q_sqrt = torch.eye(self.num_data, out=self.X.data.new()).unsqueeze(2).expand(-1,-1,self.num_latent) | ||
self.q_sqrt = parameter.LowerTriangularParam(q_sqrt) # should the diagonal be all positive? | ||
|
||
def compute_log_likelihood(self): | ||
""" | ||
This method computes the variational lower bound on the likelihood, | ||
which is: | ||
E_{q(F)} [ \log p(Y|F) ] - KL[ q(F) || p(F)] | ||
with | ||
q(\\mathbf f) = N(\\mathbf f \\,|\\, \\boldsymbol \\mu, \\boldsymbol \\Sigma) | ||
""" | ||
|
||
# Get prior KL. | ||
KL = kullback_leiblers.gauss_kl_white(self.q_mu.get(), self.q_sqrt.get()) | ||
|
||
# Get conditionals | ||
K = self.kern.K(self.X) + Variable(torch.eye(self.num_data, out=self.X.data.new())) * self.jitter_level | ||
L = torch.potrf(K, upper=False) | ||
|
||
fmean = torch.matmul(L, self.q_mu) + self.mean_function(self.X) # NN,ND->ND | ||
|
||
q_sqrt_dnn = kullback_leiblers.batch_tril(self.q_sqrt.get().permute(2, 0, 1)) # D x N x N | ||
|
||
LTA = torch.matmul(L.unsqueeze(0), q_sqrt_dnn) # D x N x N | ||
fvar = (LTA**2).sum(2) | ||
|
||
fvar = fvar.t() | ||
|
||
# Get variational expectations. | ||
var_exp = self.likelihood.variational_expectations(fmean, fvar, self.Y) | ||
|
||
return var_exp.sum() - KL | ||
|
||
def predict_f(self, Xnew, full_cov=False): | ||
mu, var = conditionals.conditional(Xnew, self.X, self.kern, self.q_mu, | ||
q_sqrt=self.q_sqrt.get(), full_cov=full_cov, whiten=True) | ||
return mu + self.mean_function(Xnew), var | ||
|
||
|
||
class VGP_opper_archambeau(GPModel): | ||
""" | ||
This method approximates the Gaussian process posterior using a multivariate Gaussian. | ||
The key reference is: | ||
:: | ||
@article{Opper:2009, | ||
title = {The Variational Gaussian Approximation Revisited}, | ||
author = {Opper, Manfred and Archambeau, Cedric}, | ||
journal = {Neural Comput.}, | ||
year = {2009}, | ||
pages = {786--792}, | ||
} | ||
The idea is that the posterior over the function-value vector F is | ||
approximated by a Gaussian, and the KL divergence is minimised between | ||
the approximation and the posterior. It turns out that the optimal | ||
posterior precision shares off-diagonal elements with the prior, so | ||
only the diagonal elements of the precision need be adjusted. | ||
The posterior approximation is | ||
.. math:: | ||
q(\\mathbf f) = N(\\mathbf f \\,|\\, \\mathbf K \\boldsymbol \\alpha, | ||
[\\mathbf K^{-1} + \\textrm{diag}(\\boldsymbol \\lambda))^2]^{-1}) | ||
This approach has only 2ND parameters, rather than the N + N^2 of vgp, | ||
but the optimization is non-convex and in practice may cause difficulty. | ||
""" | ||
|
||
def __init__(self, X, Y, kern, likelihood, | ||
mean_function=mean_functions.Zero(), | ||
num_latent=None, | ||
**kwargs): | ||
""" | ||
X is a data matrix, size N x D | ||
Y is a data matrix, size N x R | ||
kern, likelihood, mean_function are appropriate GPflow objects | ||
""" | ||
X = DataHolder(X) | ||
Y = DataHolder(Y) | ||
GPModel.__init__(self, X, Y, kern, likelihood, mean_function, **kargs) | ||
self.num_data = X.shape[0] | ||
self.num_latent = num_latent or Y.shape[1] | ||
self.q_alpha = Parameter(np.zeros((self.num_data, self.num_latent))) | ||
self.q_lambda = Parameter(np.ones((self.num_data, self.num_latent)), | ||
transforms.positive) | ||
|
||
def compile(self, session=None, keep_session=True): | ||
""" | ||
Before calling the standard compile function, check to see if the size | ||
of the data has changed and add variational parameters appropriately. | ||
This is necessary because the shape of the parameters depends on the | ||
shape of the data. | ||
""" | ||
if not self.num_data == self.X.shape[0]: | ||
self.num_data = self.X.shape[0] | ||
self.q_alpha = Parameter(np.zeros((self.num_data, self.num_latent))) | ||
self.q_lambda = Parameter(np.ones((self.num_data, self.num_latent)), | ||
transforms.positive) | ||
return super(VGP_opper_archambeau, self).compile( | ||
session=session, keep_session=keep_session) | ||
|
||
def _build_likelihood(self): | ||
""" | ||
q_alpha, q_lambda are variational parameters, size N x R | ||
This method computes the variational lower bound on the likelihood, | ||
which is: | ||
E_{q(F)} [ \log p(Y|F) ] - KL[ q(F) || p(F)] | ||
with | ||
q(f) = N(f | K alpha + mean, [K^-1 + diag(square(lambda))]^-1) . | ||
""" | ||
K = self.kern.K(self.X) | ||
K_alpha = tf.matmul(K, self.q_alpha) | ||
f_mean = K_alpha + self.mean_function(self.X) | ||
|
||
# compute the variance for each of the outputs | ||
I = tf.tile(tf.expand_dims(tf.eye(self.num_data, dtype=settings.tf_float), 0), | ||
[self.num_latent, 1, 1]) | ||
A = I + tf.expand_dims(tf.transpose(self.q_lambda), 1) * \ | ||
tf.expand_dims(tf.transpose(self.q_lambda), 2) * K | ||
L = tf.cholesky(A) | ||
Li = tf.matrix_triangular_solve(L, I) | ||
tmp = Li / tf.expand_dims(tf.transpose(self.q_lambda), 1) | ||
f_var = 1. / tf.square(self.q_lambda) - tf.transpose(tf.reduce_sum(tf.square(tmp), 1)) | ||
|
||
# some statistics about A are used in the KL | ||
A_logdet = 2.0 * tf.reduce_sum(tf.log(tf.matrix_diag_part(L))) | ||
trAi = tf.reduce_sum(tf.square(Li)) | ||
|
||
KL = 0.5 * (A_logdet + trAi - self.num_data * self.num_latent + | ||
tf.reduce_sum(K_alpha * self.q_alpha)) | ||
|
||
v_exp = self.likelihood.variational_expectations(f_mean, f_var, self.Y) | ||
return tf.reduce_sum(v_exp) - KL | ||
|
||
def _build_predict(self, Xnew, full_cov=False): | ||
""" | ||
The posterior variance of F is given by | ||
q(f) = N(f | K alpha + mean, [K^-1 + diag(lambda**2)]^-1) | ||
Here we project this to F*, the values of the GP at Xnew which is given | ||
by | ||
q(F*) = N ( F* | K_{*F} alpha + mean, K_{**} - K_{*f}[K_{ff} + | ||
diag(lambda**-2)]^-1 K_{f*} ) | ||
""" | ||
|
||
# compute kernel things | ||
Kx = self.kern.K(self.X, Xnew) | ||
K = self.kern.K(self.X) | ||
|
||
# predictive mean | ||
f_mean = tf.matmul(Kx, self.q_alpha, transpose_a=True) + self.mean_function(Xnew) | ||
|
||
# predictive var | ||
A = K + tf.matrix_diag(tf.transpose(1. / tf.square(self.q_lambda))) | ||
L = tf.cholesky(A) | ||
Kx_tiled = tf.tile(tf.expand_dims(Kx, 0), [self.num_latent, 1, 1]) | ||
LiKx = tf.matrix_triangular_solve(L, Kx_tiled) | ||
if full_cov: | ||
f_var = self.kern.K(Xnew) - tf.matmul(LiKx, LiKx, transpose_a=True) | ||
else: | ||
f_var = self.kern.Kdiag(Xnew) - tf.reduce_sum(tf.square(LiKx), 1) | ||
return f_mean, tf.transpose(f_var) |
Oops, something went wrong.