Skip to content

Commit

Permalink
removing quickstart project from mct (#1054)
Browse files Browse the repository at this point in the history
* Remove quickstart project from mct
  • Loading branch information
Idan-BenAmi authored May 8, 2024
1 parent 9bf3ea7 commit 98f771f
Show file tree
Hide file tree
Showing 40 changed files with 63 additions and 3,782 deletions.
3 changes: 0 additions & 3 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -45,9 +45,6 @@ for hands-on learning. For example:
* [Post training quantization with PyTorch](tutorials/notebooks/pytorch/ptq/example_pytorch_quantization_mnist.ipynb)
* [Data Generation for ResNet18 with PyTorch](tutorials/notebooks/pytorch/data_generation/example_pytorch_data_generation.ipynb).

Additionally, for quick quantization of a variety of models from well-known collections,
visit the [quick-start page](tutorials/quick_start/README.md) and the
[results CSV](tutorials/quick_start/results/model_quantization_results.csv).

### Supported Versions

Expand Down
2 changes: 1 addition & 1 deletion model_compression_toolkit/gptq/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -17,7 +17,7 @@ The Hessian information is approximated in a label-free manner, thus, does not r

## GPTQ Usage

For detailed examples and tutorials on using GPTQ in MCT with TensorFlow or PyTorch across various models and tasks, please refer to the [tutorials package](../../tutorials). You will find comprehensive explanations, notebook examples, and a [quick-start guide](../../tutorials/quick_start/README.md) for straightforward execution.
For detailed examples and tutorials on using GPTQ in MCT with TensorFlow or PyTorch across various models and tasks, please refer to the [tutorials package](../../tutorials). You will find comprehensive explanations and notebook examples for straightforward execution.

## References

Expand Down
68 changes: 62 additions & 6 deletions tutorials/notebooks/IMX500_notebooks.md
Original file line number Diff line number Diff line change
Expand Up @@ -3,10 +3,66 @@
Here we provide examples on quantizing pre-trained models for deployment on Sony-IMX500 processing platform.
We will cover various tasks and demonstrate the necessary steps to achieve efficient quantization for optimal
deployment performance.

| Task | Model | Source Repository | Notebook |
|-----------------------------------------------------------------|----------------|---------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|
| Classification | MobileNetV2 | [Keras Applications](https://keras.io/api/applications/) | [Keras notebook](keras/ptq/example_keras_imagenet.ipynb) |
| Object Detection | YOLOv8n | [Ultralytics](https://github.com/ultralytics/ultralytics) | [Keras notebook](keras/ptq/keras_yolov8n_for_imx500.ipynb) |
| Semantic Segmentation | DeepLabV3-Plus | [bonlime's repo](https://github.com/bonlime/keras-deeplab-v3-plus) | [Keras notebook](keras/ptq/keras_deeplabv3plus_for_imx500.ipynb) |

<table>
<tr>
<th rowspan="1">Task</th>
<th rowspan="1">Model Name</th>
<th rowspan="1">Framework</th>
<th rowspan="1">Dataset Name</th>
</tr>
<!-- Classification Models (ImageNet) -->
<tr>
<td rowspan="2">Classification</td>
<td> <a href="keras/ptq/example_keras_imagenet.ipynb">MobilenetV2</a></td>
<td>Keras</td>
<td>ImageNet</td>
</tr>
<tr>
<td> <a href="pytorch/ptq/pytorch_mobilevit_xs_for_imx500.ipynb">MobileVit</a></td>
<td>PyTorch</td>
<td>ImageNet</td>
</tr>
<!-- Object Detection Models (COCO) -->
<tr>
<td rowspan="4">Object Detection</td>
<td> <a href="keras/ptq/keras_yolov8n_for_imx500.ipynb">YOLOv8n</a></td>
<td>Keras</td>
<td>COCO</td>
</tr>
<tr>
<td> <a href="pytorch/ptq/keras_yolov8n_for_imx500.ipynb">YOLOv8n</a></td>
<td>PyTorch</td>
<td>COCO</td>
</tr>
<tr>
<td> <a href="keras/ptq/example_keras_nanodet_plus.ipynb">NanoDet-Plus-m-416</a></td>
<td>Keras</td>
<td>COCO</td>
</tr>
<tr>
<td> <a href="keras/ptq/example_keras_effdet_lite0.ipynb">EfficientDet-lite0</a></td>
<td>Keras</td>
<td>COCO</td>
</tr>
<tr>
<td>Semantic Segmentation</td>
<td> <a href="keras/ptq/keras_deeplabv3plus_for_imx500.ipynb">Deeplabv3plus</a></td>
<td>Keras</td>
<td>PASCAL VOC</td>
</tr>
<tr>
<td >Instance Segmentation</td>
<td>YOLOv8n-seg</td>
<td>PyTorch</td>
<td>COCO</td>
</tr>
<tr>
<td>Pose Estimation</td>
<td>YOLOv8n-pose</td>
<td>PyTorch</td>
<td>COCO</td>
</tr>

</table>

10 changes: 0 additions & 10 deletions tutorials/notebooks/MCT_notebooks.md
Original file line number Diff line number Diff line change
Expand Up @@ -69,16 +69,6 @@ These techniques are essential for further optimizing models and achieving super
### Pytorch Tutorials


<details id="pytorch-quickstart-torchvision">
<summary>Quick-Start with Torchvision</summary>

| Tutorial |
|-----------------------------------------------------------------------------------------------------------------|
| [Quick Start - Torchvision Pretrained Model](pytorch/example_quick_start_torchvision.ipynb) |

</details>


<details id="pytorch-ptq">
<summary>Post-Training Quantization (PTQ)</summary>

Expand Down
214 changes: 0 additions & 214 deletions tutorials/notebooks/pytorch/example_quick_start_torchvision.ipynb

This file was deleted.

Loading

0 comments on commit 98f771f

Please sign in to comment.