Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Fix hvg warnings #2810

Merged
merged 4 commits into from
Jan 15, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion scanpy/experimental/pp/_highly_variable_genes.py
Original file line number Diff line number Diff line change
Expand Up @@ -199,7 +199,7 @@ def _highly_variable_pearson_residuals(

sums_genes = np.array(X_batch.sum(axis=0)).ravel()
sums_cells = np.array(X_batch.sum(axis=1)).ravel()
sum_total = np.sum(sums_genes).ravel()
sum_total = np.sum(sums_genes)
Copy link
Member Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

this makes a 0D array into a 1D array. Later a 0D array is expected, so let’s just not do that.


residual_gene_var = calculate_res(
sums_genes=sums_genes,
Expand Down
75 changes: 38 additions & 37 deletions scanpy/preprocessing/_highly_variable_genes.py
Original file line number Diff line number Diff line change
Expand Up @@ -73,7 +73,7 @@ def _highly_variable_genes_seurat_v3(
if batch_key is None:
batch_info = pd.Categorical(np.zeros(adata.shape[0], dtype=int))
else:
batch_info = adata.obs[batch_key].values
batch_info = adata.obs[batch_key].to_numpy()
Copy link
Member Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

.values is deprecated in favor of .to_numpy()


norm_gene_vars = []
for b in np.unique(batch_info):
Expand Down Expand Up @@ -159,24 +159,24 @@ def _highly_variable_genes_seurat_v3(
" 'variances', float vector (adata.var)\n"
" 'variances_norm', float vector (adata.var)"
)
adata.var["highly_variable"] = df["highly_variable"].values
adata.var["highly_variable_rank"] = df["highly_variable_rank"].values
adata.var["means"] = df["means"].values
adata.var["variances"] = df["variances"].values
adata.var["variances_norm"] = df["variances_norm"].values.astype(
"float64", copy=False
adata.var["highly_variable"] = df["highly_variable"].to_numpy()
adata.var["highly_variable_rank"] = df["highly_variable_rank"].to_numpy()
adata.var["means"] = df["means"].to_numpy()
adata.var["variances"] = df["variances"].to_numpy()
adata.var["variances_norm"] = (
df["variances_norm"].to_numpy().astype("float64", copy=False)
)
if batch_key is not None:
adata.var["highly_variable_nbatches"] = df[
"highly_variable_nbatches"
].values
].to_numpy()
if subset:
adata._inplace_subset_var(df["highly_variable"].values)
adata._inplace_subset_var(df["highly_variable"].to_numpy())
else:
if batch_key is None:
df = df.drop(["highly_variable_nbatches"], axis=1)
if subset:
df = df.iloc[df.highly_variable.values, :]
df = df.iloc[df["highly_variable"].to_numpy(), :]

return df

Expand Down Expand Up @@ -233,7 +233,7 @@ def _highly_variable_genes_single_batch(
# only a single gene fell in the bin and implicitly set them to have
# a normalized disperion of 1
one_gene_per_bin = disp_std_bin.isnull()
gen_indices = np.where(one_gene_per_bin[df["mean_bin"].values])[0].tolist()
gen_indices = np.where(one_gene_per_bin[df["mean_bin"].to_numpy()])[0].tolist()
if len(gen_indices) > 0:
logg.debug(
f"Gene indices {gen_indices} fell into a single bin: their "
Expand All @@ -242,15 +242,15 @@ def _highly_variable_genes_single_batch(
)
# Circumvent pandas 0.23 bug. Both sides of the assignment have dtype==float32,
# but there’s still a dtype error without “.value”.
disp_std_bin[one_gene_per_bin.values] = disp_mean_bin[
one_gene_per_bin.values
].values
disp_mean_bin[one_gene_per_bin.values] = 0
disp_std_bin[one_gene_per_bin.to_numpy()] = disp_mean_bin[
one_gene_per_bin.to_numpy()
].to_numpy()
disp_mean_bin[one_gene_per_bin.to_numpy()] = 0
# actually do the normalization
df["dispersions_norm"] = (
df["dispersions"].values # use values here as index differs
- disp_mean_bin[df["mean_bin"].values].values
) / disp_std_bin[df["mean_bin"].values].values
df["dispersions"].to_numpy() # use values here as index differs
- disp_mean_bin[df["mean_bin"].to_numpy()].to_numpy()
) / disp_std_bin[df["mean_bin"].to_numpy()].to_numpy()
elif flavor == "cell_ranger":
from statsmodels import robust

Expand All @@ -265,11 +265,12 @@ def _highly_variable_genes_single_batch(
warnings.simplefilter("ignore")
disp_mad_bin = disp_grouped.apply(robust.mad)
df["dispersions_norm"] = (
df["dispersions"].values - disp_median_bin[df["mean_bin"].values].values
) / disp_mad_bin[df["mean_bin"].values].values
df["dispersions"].to_numpy()
- disp_median_bin[df["mean_bin"].to_numpy()].to_numpy()
) / disp_mad_bin[df["mean_bin"].to_numpy()].to_numpy()
else:
raise ValueError('`flavor` needs to be "seurat" or "cell_ranger"')
dispersion_norm = df["dispersions_norm"].values
dispersion_norm = df["dispersions_norm"].to_numpy()
if n_top_genes is not None:
dispersion_norm = dispersion_norm[~np.isnan(dispersion_norm)]
dispersion_norm[
Expand All @@ -285,7 +286,7 @@ def _highly_variable_genes_single_batch(
)
n_top_genes = dispersion_norm.size
disp_cut_off = dispersion_norm[n_top_genes - 1]
gene_subset = np.nan_to_num(df["dispersions_norm"].values) >= disp_cut_off
gene_subset = np.nan_to_num(df["dispersions_norm"].to_numpy()) >= disp_cut_off
logg.debug(
f"the {n_top_genes} top genes correspond to a "
f"normalized dispersion cutoff of {disp_cut_off}"
Expand Down Expand Up @@ -508,7 +509,7 @@ def highly_variable_genes(
flavor=flavor,
)

hvg["gene"] = adata_subset.var_names.values
hvg["gene"] = adata_subset.var_names.to_numpy()
if (n_removed := np.sum(~filt)) > 0:
# Add 0 values for genes that were filtered out
missing_hvg = pd.DataFrame(
Expand Down Expand Up @@ -559,14 +560,14 @@ def highly_variable_genes(
df = df.loc[adata.var_names, :]
else:
df = df.loc[adata.var_names]
dispersion_norm = df.dispersions_norm.values
dispersion_norm = df["dispersions_norm"].to_numpy()
dispersion_norm[np.isnan(dispersion_norm)] = 0 # similar to Seurat
gene_subset = np.logical_and.reduce(
(
df.means > min_mean,
df.means < max_mean,
df.dispersions_norm > min_disp,
df.dispersions_norm < max_disp,
df["means"] > min_mean,
df["means"] < max_mean,
df["dispersions_norm"] > min_disp,
df["dispersions_norm"] < max_disp,
Comment on lines -566 to +570
Copy link
Member Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

using item access instead of attribute access is good style, especially for library code

)
)
df["highly_variable"] = gene_subset
Expand All @@ -582,25 +583,25 @@ def highly_variable_genes(
" 'dispersions', float vector (adata.var)\n"
" 'dispersions_norm', float vector (adata.var)"
)
adata.var["highly_variable"] = df["highly_variable"].values
adata.var["means"] = df["means"].values
adata.var["dispersions"] = df["dispersions"].values
adata.var["dispersions_norm"] = df["dispersions_norm"].values.astype(
"float32", copy=False
adata.var["highly_variable"] = df["highly_variable"].to_numpy()
adata.var["means"] = df["means"].to_numpy()
adata.var["dispersions"] = df["dispersions"].to_numpy()
adata.var["dispersions_norm"] = (
df["dispersions_norm"].to_numpy().astype("float32", copy=False)
)

if batch_key is not None:
adata.var["highly_variable_nbatches"] = df[
"highly_variable_nbatches"
].values
].to_numpy()
adata.var["highly_variable_intersection"] = df[
"highly_variable_intersection"
].values
].to_numpy()
if subset:
adata._inplace_subset_var(df["highly_variable"].values)
adata._inplace_subset_var(df["highly_variable"].to_numpy())

else:
if subset:
df = df.iloc[df.highly_variable.values, :]
df = df.loc[df["highly_variable"]]

return df
2 changes: 1 addition & 1 deletion scanpy/testing/_pytest/fixtures/data.py
Original file line number Diff line number Diff line change
Expand Up @@ -66,7 +66,7 @@ def _prepare_pbmc_testdata(
import scanpy as sc

if small:
adata = adata[:1000, :500]
adata = adata[:1000, :500].copy()
sc.pp.filter_cells(adata, min_genes=1)
Comment on lines -69 to 70
Copy link
Member Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

avoids a warning

np.random.seed(42)
adata.obs["batch"] = np.random.randint(0, 3, size=adata.shape[0])
Expand Down
Loading
Loading