Jump to this document to understand the data, approach and further improvements
- transformers
- torch
- streamlit
- fastapi
- pandas
- Clone the repo
- Install requirements:
conda create --name topicsentiment --file requirements.txt
orpip install -r requirements.txt
in your env - Download pre-trained model files here
- Copy the files to model_dir in config
- Run
uvicorn prediction_api:app
- Run
streamlit run st_app.py
- Go to
http://localhost:8501/
Pandas and Torch dataset classes in topicsentiment/dataset.py
Model Class and Trainer Class in topicsentiment/model.py
Jump to topicsentiment for detailed info
Configuration in config.py
Run python train.py --data sentisum-evaluation-dataset.csv
for full pipeline - preprocess and train
Run python train.py --data sentisum-evaluation-dataset.csv --preprocess
saves the preprocessed dataset to model_dir in config
Run python train.py --data final_data.pkl --train
trains the preprocessed dataset
Built using FastAPI
Code in prediction_api.py
Run uvicorn prediction_api:app
Swagger Docs at http://127.0.0.1:8000/docs
Simple Interface built using streamlit
Code in st_app.py
Run streamlit run st_app.py
App at http://localhost:8501/
- Alternative approaches
- Notebook for data exploration
- Docker image