forked from rust-lang/rust
-
Notifications
You must be signed in to change notification settings - Fork 6
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Auto merge of rust-lang#135272 - BoxyUwU:generic_arg_infer_reliabilit…
…y_2, r=compiler-errors Forbid usage of `hir` `Infer` const/ty variants in ambiguous contexts The feature `generic_arg_infer` allows providing `_` as an argument to const generics in order to infer them. This introduces a syntactic ambiguity as to whether generic arguments are type or const arguments. In order to get around this we introduced a fourth `GenericArg` variant, `Infer` used to represent `_` as an argument to generic parameters when we don't know if its a type or a const argument. This made hir visitors that care about `TyKind::Infer` or `ConstArgKind::Infer` very error prone as checking for `TyKind::Infer`s in `visit_ty` would find *some* type infer arguments but not *all* of them as they would sometimes be lowered to `GenericArg::Infer` instead. Additionally the `visit_infer` method would previously only visit `GenericArg::Infer` not *all* infers (e.g. `TyKind::Infer`), this made it very easy to override `visit_infer` and expect it to visit all infers when in reality it would only visit *some* infers. --- This PR aims to fix those issues by making the `TyKind` and `ConstArgKind` types generic over whether the infer types/consts are represented by `Ty/ConstArgKind::Infer` or out of line (e.g. by a `GenericArg::Infer` or accessible by overiding `visit_infer`). We then make HIR Visitors convert all const args and types to the versions where infer vars are stored out of line and call `visit_infer` in cases where a `Ty`/`Const` would previously have had a `Ty/ConstArgKind::Infer` variant: API Summary ```rust enum AmbigArg {} enum Ty/ConstArgKind<Unambig = ()> { ... Infer(Unambig), } impl Ty/ConstArg { fn try_as_ambig_ty/ct(self) -> Option<Ty/ConstArg<AmbigArg>>; } impl Ty/ConstArg<AmbigArg> { fn as_unambig_ty/ct(self) -> Ty/ConstArg; } enum InferKind { Ty(Ty), Const(ConstArg), Ambig(InferArg), } trait Visitor { ... fn visit_ty/const_arg(&mut self, Ty/ConstArg<AmbigArg>) -> Self::Result; fn visit_infer(&mut self, id: HirId, sp: Span, kind: InferKind) -> Self::Result; } // blanket impl'd, not meant to be overriden trait VisitorExt { fn visit_ty/const_arg_unambig(&mut self, Ty/ConstArg) -> Self::Result; } fn walk_unambig_ty/const_arg(&mut V, Ty/ConstArg) -> Self::Result; fn walk_ty/const_arg(&mut V, Ty/ConstArg<AmbigArg>) -> Self::Result; ``` The end result is that `visit_infer` visits *all* infer args and is also the *only* way to visit an infer arg, `visit_ty` and `visit_const_arg` can now no longer encounter a `Ty/ConstArgKind::Infer`. Representing this in the type system means that it is now very difficult to mess things up, either accessing `TyKind::Infer` "just works" and you won't miss *some* type infers- or it doesn't work and you have to look at `visit_infer` or some `GenericArg::Infer` which forces you to think about the full complexity involved. Unfortunately there is no lint right now about explicitly matching on uninhabited variants, I can't find the context for why this is the case 🤷♀️ I'm not convinced the framing of un/ambig ty/consts is necessarily the right one but I'm not sure what would be better. I somewhat like calling them full/partial types based on the fact that `Ty<Partial>`/`Ty<Full>` directly specifies how many of the type kinds are actually represented compared to `Ty<Ambig>` which which leaves that to the reader to figure out based on the logical consequences of it the type being in an ambiguous position. --- tool changes have been modified in their own commits for easier reviewing by anyone getting cc'd from subtree changes. I also attempted to split out "bug fixes arising from the refactoring" into their own commit so they arent lumped in with a big general refactor commit Fixes rust-lang#112110
- Loading branch information
Showing
119 changed files
with
1,054 additions
and
667 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.