-
Notifications
You must be signed in to change notification settings - Fork 32
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
66ff642
commit d21795a
Showing
1 changed file
with
221 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,221 @@ | ||
from typing import Union, Tuple, List, Dict | ||
|
||
import math | ||
import torch | ||
import torch.nn as nn | ||
from torch import Tensor | ||
|
||
|
||
def segment_sum(data, segment_ids, num_segments): | ||
""" | ||
Args: | ||
data (Tensor): A tensor, typically two-dimensional. | ||
segment_ids (Tensor): A one-dimensional tensor that indicates the | ||
segmentation in data. | ||
num_segments (int): Total segments. | ||
Returns: | ||
output: sum calculated by segment_ids, which has the same shape as data. | ||
""" | ||
output = torch.zeros((num_segments, data.size(1)), device=data.device, dtype=data.dtype) | ||
output.scatter_add_(0, segment_ids.unsqueeze(1).expand(-1, data.size(1)), data) | ||
|
||
return output | ||
|
||
|
||
def segment_softmax( | ||
data: Tensor, | ||
segment_ids: Tensor, | ||
num_segments: int | ||
): | ||
""" | ||
Args: | ||
data (Tensor): A tensor, typically two-dimensional. | ||
segment_ids (Tensor): A one-dimensional tensor that indicates the | ||
segmentation in data. | ||
num_segments (int): Total segments. | ||
Returns: | ||
score: softmax score, which has the same shape as data. | ||
""" | ||
max_values = torch.zeros(num_segments, data.size(1), device=data.device, dtype=data.dtype) | ||
for i in range(num_segments): | ||
segment_data = data[segment_ids == i] | ||
if segment_data.size(0) > 0: | ||
max_values[i] = segment_data.max(dim=0)[0] | ||
|
||
gathered_max_values = max_values[segment_ids] | ||
# print(gathered_max_values) | ||
exp = torch.exp(data - gathered_max_values) | ||
# print(gathered_max_values) | ||
# print(data - gathered_max_values) | ||
# print(exp) | ||
|
||
denominator = torch.zeros(num_segments, data.size(1), device=data.device) | ||
for i in range(num_segments): | ||
# print(exp[segment_ids == i]) | ||
# print(exp[segment_ids == i].sum(dim=0)) | ||
segment_exp = exp[segment_ids == i] | ||
if segment_exp.size(0) > 0: | ||
denominator[i] = segment_exp.sum(dim=0) | ||
|
||
gathered_denominator = denominator[segment_ids] | ||
# print(gathered_denominator) | ||
score = exp / (gathered_denominator + 1e-16) | ||
|
||
return score | ||
|
||
|
||
class HGTConv(torch.nn.Module): | ||
def __init__( | ||
self, | ||
in_channels: Union[int, Dict[str, int]], | ||
out_channels: int, | ||
metadata: Tuple[List[str], List[Tuple[str, str]]], | ||
heads: int = 1, | ||
group: str = "sum", | ||
dropout_rate: float = 0., | ||
): | ||
super().__init__() | ||
|
||
if not isinstance(in_channels, dict): | ||
in_channels = {node_type: in_channels for node_type in metadata[0]} | ||
|
||
self.in_channels = in_channels | ||
self.out_channels = out_channels | ||
self.heads = heads | ||
self.group = group | ||
|
||
self.q_lin = nn.ModuleDict() | ||
self.k_lin = nn.ModuleDict() | ||
self.v_lin = nn.ModuleDict() | ||
self.a_lin = nn.ModuleDict() | ||
self.skip = nn.ParameterDict() | ||
self.dropout_rate = dropout_rate | ||
self.dropout = nn.Dropout(self.dropout_rate) | ||
|
||
# Initialize parameters for each node type | ||
for node_type, in_channels in in_channels.items(): | ||
self.q_lin[node_type] = nn.Linear(in_features=in_channels, out_features=out_channels) | ||
self.k_lin[node_type] = nn.Linear(in_features=in_channels, out_features=out_channels) | ||
self.v_lin[node_type] = nn.Linear(in_features=in_channels, out_features=out_channels) | ||
self.a_lin[node_type] = nn.Linear(in_features=out_channels, out_features=out_channels) | ||
self.skip[node_type] = nn.Parameter(torch.tensor(1.0)) | ||
|
||
self.a_rel = nn.ParameterDict() | ||
self.m_rel = nn.ParameterDict() | ||
self.p_rel = nn.ParameterDict() | ||
dim = out_channels // heads | ||
|
||
# Initialize parameters for each edge type | ||
for edge_type in metadata[1]: | ||
edge_type = '__'.join(edge_type) | ||
|
||
# Initialize a_rel weights with truncated normal | ||
a_weight = nn.Parameter(torch.empty((heads, dim, dim), requires_grad=True)) | ||
nn.init.trunc_normal_(a_weight) | ||
self.a_rel[edge_type + 'a'] = a_weight | ||
|
||
# Initialize m_rel weights with truncated normal | ||
m_weight = nn.Parameter(torch.empty((heads, dim, dim), requires_grad=True)) | ||
nn.init.trunc_normal_(m_weight) | ||
self.m_rel[edge_type + 'm'] = m_weight | ||
|
||
# Initialize p_rel weights with ones | ||
self.p_rel[edge_type] = nn.Parameter(torch.ones(heads)) | ||
|
||
def forward( | ||
self, | ||
x_dict: Dict[str, Tensor], | ||
edge_index_dict: Dict[Tuple[str, str], Tensor], # sparse_coo here! | ||
): | ||
H, D = self.heads, self.out_channels // self.heads | ||
k_dict, q_dict, v_dict, out_dict = {}, {}, {}, {} | ||
|
||
# Prepare q, k, v by node types | ||
for node_type, x in x_dict.items(): | ||
k_dict[node_type] = self.k_lin[node_type](x).view(-1, H, D) | ||
q_dict[node_type] = self.q_lin[node_type](x).view(-1, H, D) | ||
v_dict[node_type] = self.v_lin[node_type](x).view(-1, H, D) | ||
out_dict[node_type] = [] | ||
|
||
# Iterate over edge-types: | ||
for edge_type, edge_index in edge_index_dict.items(): | ||
src_type, dst_type = edge_type[0], edge_type[1] | ||
edge_type = '__'.join(edge_type) | ||
|
||
# a_rel: (H, D, D), k: (B, H, D) | ||
a_rel = self.a_rel[edge_type + 'a'] | ||
k = (k_dict[src_type].transpose(1, 0) @ a_rel).transpose(1, 0) | ||
|
||
# m_rel: (H, D, D), v: (B, H, D) | ||
m_rel = self.m_rel[edge_type + 'm'] | ||
v = (v_dict[src_type].transpose(1, 0) @ m_rel).transpose(1, 0) | ||
|
||
edge_index = edge_index.coalesce() | ||
src_index = edge_index.indices()[0] | ||
tgt_index = edge_index.indices()[1] | ||
# q_i/v_j/k_j: (N, H, D) N is edge_index's shape[1]. rel: (H,) | ||
q_i = torch.index_select(q_dict[dst_type], dim=0, index=tgt_index) | ||
k_j = torch.index_select(k, dim=0, index=src_index) | ||
v_j = torch.index_select(v, dim=0, index=src_index) | ||
rel = self.p_rel[edge_type] | ||
# out: (N'[N after deduplication], out_channels) | ||
out = self.propagate( | ||
edge_index=edge_index, | ||
aggr='sum', | ||
q_i=q_i, | ||
k_j=k_j, | ||
v_j=v_j, | ||
rel=rel, | ||
num_nodes=x_dict[dst_type].shape[0] | ||
) | ||
out_dict[dst_type].append(out) | ||
|
||
for node_type, outs in out_dict.items(): | ||
outs = torch.stack(outs) | ||
# out: (N', out_channels) | ||
out = torch.sum(outs, dim=0, keepdim=False) | ||
# out: (N', out_channels) | ||
out = self.a_lin[node_type](out) | ||
alpha = torch.sigmoid(self.skip[node_type]) | ||
# print(self.skip[node_type]) | ||
# print(alpha) | ||
# print(out.shape) | ||
# print(x_dict[node_type].shape) | ||
# out: (N', out_channels) | ||
out = alpha * out + (1 - alpha) * x_dict[node_type] | ||
out_dict[node_type] = out | ||
# out_dict: (Num_node_type, N', out_channels) | ||
return out_dict | ||
|
||
|
||
def propagate( | ||
self, | ||
edge_index: Tensor, | ||
aggr: str, | ||
q_i: Tensor, | ||
k_j: Tensor, | ||
v_j: Tensor, | ||
rel: Tensor, | ||
num_nodes: int, | ||
): | ||
msg = self.message(q_i, k_j, v_j, rel, edge_index.indices()[1], num_nodes) | ||
# x: (N'[N after deduplication], out_channels) | ||
# print(msg) | ||
# print(edge_index.indices()[1]) | ||
x = self.aggregate(msg, edge_index.indices()[1], num_nodes, aggr) | ||
return x | ||
|
||
def message(self, q_i, k_j, v_j, rel, tgt_index, num_nodes): | ||
# alpha: (N, H) | ||
alpha = (k_j * q_i).sum(dim=-1) * rel | ||
alpha = alpha / math.sqrt(q_i.size(-1)) | ||
alpha = self.dropout(segment_softmax(alpha, tgt_index, num_nodes)) | ||
# out: (N, H, D) | ||
out = v_j * alpha.unsqueeze(-1) | ||
return out.view(-1, self.out_channels) # (N, out_channels[H*D]) | ||
|
||
def aggregate(self, msg, tgt_index, num_nodes, aggr): | ||
if aggr == 'sum': | ||
return segment_sum(msg, tgt_index, num_nodes) |