forked from apache/mxnet
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
[MXNET-68] Random shuffle implementation (apache#10048)
* Random shuffle implementation This operator randomly shuffles an NDArray along the first axis. The order of the elements in each subarray does not change. For exmaple, if an NDArray `x` is shuffled, the order of the subarrays `x[i]` randomly changes but the order of the elements in each `x[i]` does not change. It is modeled on `numpy.random.shuffle`. In cpu, the shuffling of an 1D array is delegated to `__gnu_parallel::random_shuffle`, which utilizes openmp, for clang on linux and gcc on any OS and delegated to `std::shuffle` for other platforms. For an multidimensional array, the usual Fisher-Yates shuffling is implemented. In gpu, it shuffles the array of indices representing the subarrays and then rearrange the elements of the data array according to the shuffled index array. To shuffle the index array, a random key is generated for each index and then the indices are sorted by the keys. The sorting is delegated to mshadow's `SortByKey` which again delegates the call to thrust's `sort_by_key`. * Refactoring to avoid a preprocessing problem in Windows build * Cosmetic changes * Typo * Adding const keyword at several places * Fix the bug that integer arrays are not allowed * Revise the comments to explain the unit test * Add a check for correct array shape * Revised unit test with larger arrays * Replace the custom hash with 'str' * Fix a bug due to the integer arithmetic in python2 * Revise comments for the unit test * Fix the invalid fix in the commit f240714 * Update random.md * Update random.md
- Loading branch information
1 parent
2442d8e
commit 59b261d
Showing
7 changed files
with
386 additions
and
2 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,134 @@ | ||
/* | ||
* Licensed to the Apache Software Foundation (ASF) under one | ||
* or more contributor license agreements. See the NOTICE file | ||
* distributed with this work for additional information | ||
* regarding copyright ownership. The ASF licenses this file | ||
* to you under the Apache License, Version 2.0 (the | ||
* "License"); you may not use this file except in compliance | ||
* with the License. You may obtain a copy of the License at | ||
* | ||
* http://www.apache.org/licenses/LICENSE-2.0 | ||
* | ||
* Unless required by applicable law or agreed to in writing, | ||
* software distributed under the License is distributed on an | ||
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY | ||
* KIND, either express or implied. See the License for the | ||
* specific language governing permissions and limitations | ||
* under the License. | ||
*/ | ||
|
||
/*! | ||
* Copyright (c) 2018 by Contributors | ||
* \file shuffle_op.cc | ||
* \brief Operator to shuffle elements of an NDArray | ||
*/ | ||
#if (__GNUC__ > 4 && !defined(__clang__major__)) || (__clang_major__ > 4 && __linux__) | ||
#define USE_GNU_PARALLEL_SHUFFLE | ||
#endif | ||
|
||
#include <mxnet/operator_util.h> | ||
#include <algorithm> | ||
#include <random> | ||
#include <vector> | ||
#ifdef USE_GNU_PARALLEL_SHUFFLE | ||
#include <parallel/algorithm> | ||
#endif | ||
#include "../elemwise_op_common.h" | ||
|
||
namespace mxnet { | ||
namespace op { | ||
|
||
namespace { | ||
|
||
template<typename DType, typename Rand> | ||
void Shuffle1D(DType* const out, const index_t size, Rand* const prnd) { | ||
#ifdef USE_GNU_PARALLEL_SHUFFLE | ||
auto rand_n = [prnd](index_t n) { | ||
std::uniform_int_distribution<index_t> dist(0, n - 1); | ||
return dist(*prnd); | ||
}; | ||
__gnu_parallel::random_shuffle(out, out + size, rand_n); | ||
#else | ||
std::shuffle(out, out + size, *prnd); | ||
#endif | ||
} | ||
|
||
template<typename DType, typename Rand> | ||
void ShuffleND(DType* const out, const index_t size, const index_t first_axis_len, | ||
Rand* const prnd) { | ||
// Fisher-Yates shuffling | ||
const index_t stride = size / first_axis_len; | ||
auto rand_n = [prnd](index_t n) { | ||
std::uniform_int_distribution<index_t> dist(0, n - 1); | ||
return dist(*prnd); | ||
}; | ||
CHECK_GT(first_axis_len, 0U); | ||
for (index_t i = first_axis_len - 1; i > 0; --i) { | ||
const index_t j = rand_n(i + 1); | ||
if (i != j) { | ||
std::swap_ranges(out + stride * i, out + stride * (i + 1), out + stride * j); | ||
} | ||
} | ||
} | ||
|
||
} // namespace | ||
|
||
void ShuffleForwardCPU(const nnvm::NodeAttrs& attrs, | ||
const OpContext& ctx, | ||
const std::vector<TBlob>& inputs, | ||
const std::vector<OpReqType>& req, | ||
const std::vector<TBlob>& outputs) { | ||
using namespace mxnet_op; | ||
if (req[0] == kNullOp) { | ||
return; | ||
} | ||
CHECK_NE(req[0], kAddTo) << "Shuffle does not support AddTo"; | ||
const TShape& input_shape = inputs[0].shape_; | ||
const index_t size = inputs[0].Size(); | ||
const index_t first_axis_len = input_shape[0]; | ||
Stream<cpu> *s = ctx.get_stream<cpu>(); | ||
MSHADOW_TYPE_SWITCH(inputs[0].type_flag_, DType, { | ||
Tensor<cpu, 1, DType> in = inputs[0].get_with_shape<cpu, 1, DType>(Shape1(size), s); | ||
Tensor<cpu, 1, DType> out = outputs[0].get_with_shape<cpu, 1, DType>(Shape1(size), s); | ||
auto& prnd = ctx.requested[0].get_random<cpu, index_t>(ctx.get_stream<cpu>())->GetRndEngine(); | ||
if (req[0] != kWriteInplace) { | ||
std::copy(in.dptr_, in.dptr_ + size, out.dptr_); | ||
} | ||
if (input_shape.ndim() == 1) { | ||
Shuffle1D(out.dptr_, size, &prnd); | ||
} else { | ||
ShuffleND(out.dptr_, size, first_axis_len, &prnd); | ||
} | ||
}); | ||
} | ||
|
||
|
||
// No parameter is declared. | ||
// No backward computation is registered. Shuffling is not differentiable. | ||
|
||
NNVM_REGISTER_OP(_shuffle) | ||
.add_alias("shuffle") | ||
.describe(R"code(Randomly shuffle the elements. | ||
This shuffles the array along the first axis. | ||
The order of the elements in each subarray does not change. | ||
For example, if a 2D array is given, the order of the rows randomly changes, | ||
but the order of the elements in each row does not change. | ||
)code") | ||
.set_num_inputs(1) | ||
.set_num_outputs(1) | ||
.set_attr<nnvm::FInferShape>("FInferShape", ElemwiseShape<1, 1>) | ||
.set_attr<nnvm::FInferType>("FInferType", ElemwiseType<1, 1>) | ||
.set_attr<FResourceRequest>("FResourceRequest", | ||
[](const nnvm::NodeAttrs& attrs) { | ||
return std::vector<ResourceRequest>{ResourceRequest::kRandom, ResourceRequest::kTempSpace}; | ||
}) | ||
.set_attr<nnvm::FInplaceOption>("FInplaceOption", | ||
[](const NodeAttrs& attrs) { | ||
return std::vector<std::pair<int, int>>{{0, 0}}; | ||
}) | ||
.set_attr<FCompute>("FCompute<cpu>", ShuffleForwardCPU) | ||
.add_argument("data", "NDArray-or-Symbol", "Data to be shuffled."); | ||
|
||
} // namespace op | ||
} // namespace mxnet |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,106 @@ | ||
/* | ||
* Licensed to the Apache Software Foundation (ASF) under one | ||
* or more contributor license agreements. See the NOTICE file | ||
* distributed with this work for additional information | ||
* regarding copyright ownership. The ASF licenses this file | ||
* to you under the Apache License, Version 2.0 (the | ||
* "License"); you may not use this file except in compliance | ||
* with the License. You may obtain a copy of the License at | ||
* | ||
* http://www.apache.org/licenses/LICENSE-2.0 | ||
* | ||
* Unless required by applicable law or agreed to in writing, | ||
* software distributed under the License is distributed on an | ||
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY | ||
* KIND, either express or implied. See the License for the | ||
* specific language governing permissions and limitations | ||
* under the License. | ||
*/ | ||
|
||
/*! | ||
* Copyright (c) 2018 by Contributors | ||
* \file shuffle_op.cc | ||
* \brief Operator to shuffle elements of an NDArray | ||
*/ | ||
#include <mxnet/operator_util.h> | ||
#include <algorithm> | ||
#include <random> | ||
#include <vector> | ||
#include "../elemwise_op_common.h" | ||
#include "../tensor/init_op.h" | ||
|
||
namespace mxnet { | ||
namespace op { | ||
|
||
namespace { | ||
|
||
struct CopyForShuffle { | ||
template<typename DType> | ||
MSHADOW_XINLINE static void Map(int i, const DType* const in, DType* out, | ||
const index_t* indices, const index_t stride) { | ||
out[i] = in[indices[i / stride] * stride + i % stride]; | ||
} | ||
}; | ||
|
||
} // namespace | ||
|
||
void ShuffleForwardGPU(const nnvm::NodeAttrs& attrs, | ||
const OpContext& ctx, | ||
const std::vector<TBlob>& inputs, | ||
const std::vector<OpReqType>& req, | ||
const std::vector<TBlob>& outputs) { | ||
using namespace mxnet_op; | ||
if (req[0] == kNullOp) { | ||
return; | ||
} | ||
CHECK_NE(req[0], kAddTo) << "Shuffle does not support AddTo"; | ||
const TShape& input_shape = inputs[0].shape_; | ||
const index_t size = inputs[0].Size(); | ||
const index_t first_axis_len = input_shape[0]; | ||
const index_t stride = size / first_axis_len; | ||
Stream<gpu> *s = ctx.get_stream<gpu>(); | ||
MSHADOW_TYPE_SWITCH(inputs[0].type_flag_, DType, { | ||
using KeyType = index_t; | ||
Tensor<gpu, 1, DType> in = inputs[0].get_with_shape<gpu, 1, DType>(Shape1(size), s); | ||
Tensor<gpu, 1, DType> out = outputs[0].get_with_shape<gpu, 1, DType>(Shape1(size), s); | ||
Random<gpu, KeyType> *prnd = ctx.requested[0].get_random<gpu, KeyType>(s); | ||
if (input_shape.ndim() == 1) { | ||
if (req[0] != kWriteInplace) { | ||
Copy(out, in, s); | ||
} | ||
Tensor<gpu, 1, KeyType> keys = | ||
ctx.requested[1].get_space_typed<gpu, 1, KeyType>(Shape1(size), s); | ||
prnd->GetRandInt(keys); | ||
SortByKey(keys, out, true); | ||
} else { | ||
const size_t tmp_space_size = req[0] == kWriteInplace ? | ||
2 * first_axis_len * sizeof(index_t) + size * sizeof(DType) : | ||
2 * first_axis_len * sizeof(index_t); | ||
Tensor<gpu, 1, char> tmp_space = | ||
ctx.requested[1].get_space_typed<gpu, 1, char>(Shape1(tmp_space_size), s); | ||
char* tmp_space_ptr = tmp_space.dptr_; | ||
Tensor<gpu, 1, index_t> indices(reinterpret_cast<index_t*>(tmp_space_ptr), | ||
Shape1(first_axis_len), s); | ||
tmp_space_ptr += sizeof(index_t) * first_axis_len; | ||
Kernel<range_fwd, gpu>::Launch(s, first_axis_len, 1, 0U, 1U, kWriteTo, indices.dptr_); | ||
Tensor<gpu, 1, KeyType> keys(reinterpret_cast<KeyType*>(tmp_space_ptr), | ||
Shape1(first_axis_len), s); | ||
tmp_space_ptr += sizeof(KeyType) * first_axis_len; | ||
prnd->GetRandInt(keys); | ||
SortByKey(keys, indices, true); | ||
if (req[0] == kWriteInplace) { | ||
Tensor<gpu, 1, DType> buf(reinterpret_cast<DType*>(tmp_space_ptr), Shape1(size), s); | ||
Copy(buf, in, s); | ||
Kernel<CopyForShuffle, gpu>::Launch(s, size, buf.dptr_, out.dptr_, indices.dptr_, stride); | ||
} else { | ||
Kernel<CopyForShuffle, gpu>::Launch(s, size, in.dptr_, out.dptr_, indices.dptr_, stride); | ||
} | ||
} | ||
}); | ||
} | ||
|
||
NNVM_REGISTER_OP(_shuffle) | ||
.set_attr<FCompute>("FCompute<gpu>", ShuffleForwardGPU); | ||
|
||
} // namespace op | ||
} // namespace mxnet |
Oops, something went wrong.