Skip to content

Commit

Permalink
This closes #785, support to change tab color; new formula function: …
Browse files Browse the repository at this point in the history
…FISHER, FISHERINV, GAMMA, GAMMALN, MIN, MINA, PERMUT
  • Loading branch information
xuri committed Feb 15, 2021
1 parent 36b7990 commit bddea12
Show file tree
Hide file tree
Showing 5 changed files with 380 additions and 19 deletions.
278 changes: 267 additions & 11 deletions calc.go
Original file line number Diff line number Diff line change
Expand Up @@ -249,9 +249,13 @@ var tokenPriority = map[string]int{
// FACT
// FACTDOUBLE
// FALSE
// FISHER
// FISHERINV
// FLOOR
// FLOOR.MATH
// FLOOR.PRECISE
// GAMMA
// GAMMALN
// GCD
// HLOOKUP
// IF
Expand All @@ -278,6 +282,8 @@ var tokenPriority = map[string]int{
// MAX
// MDETERM
// MEDIAN
// MIN
// MINA
// MOD
// MROUND
// MULTINOMIAL
Expand All @@ -286,6 +292,7 @@ var tokenPriority = map[string]int{
// NOT
// ODD
// OR
// PERMUT
// PI
// POWER
// PRODUCT
Expand All @@ -295,6 +302,7 @@ var tokenPriority = map[string]int{
// RAND
// RANDBETWEEN
// REPT
// ROMAN
// ROUND
// ROUNDDOWN
// ROUNDUP
Expand Down Expand Up @@ -1798,7 +1806,7 @@ func (fn *formulaFuncs) FACT(argsList *list.List) formulaArg {
if number.Number < 0 {
return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
}
return newStringFormulaArg(strings.ToUpper(fmt.Sprintf("%g", fact(number.Number))))
return newNumberFormulaArg(fact(number.Number))
}

// FACTDOUBLE function returns the double factorial of a supplied number. The
Expand Down Expand Up @@ -2552,7 +2560,8 @@ func (fn *formulaFuncs) RANDBETWEEN(argsList *list.List) formulaArg {
if top.Number < bottom.Number {
return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
}
return newNumberFormulaArg(float64(rand.New(rand.NewSource(time.Now().UnixNano())).Int63n(int64(top.Number-bottom.Number+1)) + int64(bottom.Number)))
num := rand.New(rand.NewSource(time.Now().UnixNano())).Int63n(int64(top.Number - bottom.Number + 1))
return newNumberFormulaArg(float64(num + int64(bottom.Number)))
}

// romanNumerals defined a numeral system that originated in ancient Rome and
Expand All @@ -2563,11 +2572,34 @@ type romanNumerals struct {
s string
}

var romanTable = [][]romanNumerals{{{1000, "M"}, {900, "CM"}, {500, "D"}, {400, "CD"}, {100, "C"}, {90, "XC"}, {50, "L"}, {40, "XL"}, {10, "X"}, {9, "IX"}, {5, "V"}, {4, "IV"}, {1, "I"}},
{{1000, "M"}, {950, "LM"}, {900, "CM"}, {500, "D"}, {450, "LD"}, {400, "CD"}, {100, "C"}, {95, "VC"}, {90, "XC"}, {50, "L"}, {45, "VL"}, {40, "XL"}, {10, "X"}, {9, "IX"}, {5, "V"}, {4, "IV"}, {1, "I"}},
{{1000, "M"}, {990, "XM"}, {950, "LM"}, {900, "CM"}, {500, "D"}, {490, "XD"}, {450, "LD"}, {400, "CD"}, {100, "C"}, {99, "IC"}, {90, "XC"}, {50, "L"}, {45, "VL"}, {40, "XL"}, {10, "X"}, {9, "IX"}, {5, "V"}, {4, "IV"}, {1, "I"}},
{{1000, "M"}, {995, "VM"}, {990, "XM"}, {950, "LM"}, {900, "CM"}, {500, "D"}, {495, "VD"}, {490, "XD"}, {450, "LD"}, {400, "CD"}, {100, "C"}, {99, "IC"}, {90, "XC"}, {50, "L"}, {45, "VL"}, {40, "XL"}, {10, "X"}, {9, "IX"}, {5, "V"}, {4, "IV"}, {1, "I"}},
{{1000, "M"}, {999, "IM"}, {995, "VM"}, {990, "XM"}, {950, "LM"}, {900, "CM"}, {500, "D"}, {499, "ID"}, {495, "VD"}, {490, "XD"}, {450, "LD"}, {400, "CD"}, {100, "C"}, {99, "IC"}, {90, "XC"}, {50, "L"}, {45, "VL"}, {40, "XL"}, {10, "X"}, {9, "IX"}, {5, "V"}, {4, "IV"}, {1, "I"}}}
var romanTable = [][]romanNumerals{
{
{1000, "M"}, {900, "CM"}, {500, "D"}, {400, "CD"}, {100, "C"}, {90, "XC"},
{50, "L"}, {40, "XL"}, {10, "X"}, {9, "IX"}, {5, "V"}, {4, "IV"}, {1, "I"},
},
{
{1000, "M"}, {950, "LM"}, {900, "CM"}, {500, "D"}, {450, "LD"}, {400, "CD"},
{100, "C"}, {95, "VC"}, {90, "XC"}, {50, "L"}, {45, "VL"}, {40, "XL"},
{10, "X"}, {9, "IX"}, {5, "V"}, {4, "IV"}, {1, "I"},
},
{
{1000, "M"}, {990, "XM"}, {950, "LM"}, {900, "CM"}, {500, "D"}, {490, "XD"},
{450, "LD"}, {400, "CD"}, {100, "C"}, {99, "IC"}, {90, "XC"}, {50, "L"},
{45, "VL"}, {40, "XL"}, {10, "X"}, {9, "IX"}, {5, "V"}, {4, "IV"}, {1, "I"},
},
{
{1000, "M"}, {995, "VM"}, {990, "XM"}, {950, "LM"}, {900, "CM"}, {500, "D"},
{495, "VD"}, {490, "XD"}, {450, "LD"}, {400, "CD"}, {100, "C"}, {99, "IC"},
{90, "XC"}, {50, "L"}, {45, "VL"}, {40, "XL"}, {10, "X"}, {9, "IX"},
{5, "V"}, {4, "IV"}, {1, "I"},
},
{
{1000, "M"}, {999, "IM"}, {995, "VM"}, {990, "XM"}, {950, "LM"}, {900, "CM"},
{500, "D"}, {499, "ID"}, {495, "VD"}, {490, "XD"}, {450, "LD"}, {400, "CD"},
{100, "C"}, {99, "IC"}, {90, "XC"}, {50, "L"}, {45, "VL"}, {40, "XL"},
{10, "X"}, {9, "IX"}, {5, "V"}, {4, "IV"}, {1, "I"},
},
}

// ROMAN function converts an arabic number to Roman. I.e. for a supplied
// integer, the function returns a text string depicting the roman numeral
Expand Down Expand Up @@ -3191,6 +3223,112 @@ func (fn *formulaFuncs) COUNTBLANK(argsList *list.List) formulaArg {
return newNumberFormulaArg(float64(count))
}

// FISHER function calculates the Fisher Transformation for a supplied value.
// The syntax of the function is:
//
// FISHER(x)
//
func (fn *formulaFuncs) FISHER(argsList *list.List) formulaArg {
if argsList.Len() != 1 {
return newErrorFormulaArg(formulaErrorVALUE, "FISHER requires 1 numeric argument")
}
token := argsList.Front().Value.(formulaArg)
switch token.Type {
case ArgString:
arg := token.ToNumber()
if arg.Type == ArgNumber {
if arg.Number <= -1 || arg.Number >= 1 {
return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
}
return newNumberFormulaArg(0.5 * math.Log((1+arg.Number)/(1-arg.Number)))
}
case ArgNumber:
if token.Number <= -1 || token.Number >= 1 {
return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
}
return newNumberFormulaArg(0.5 * math.Log((1+token.Number)/(1-token.Number)))
}
return newErrorFormulaArg(formulaErrorVALUE, "FISHER requires 1 numeric argument")
}

// FISHERINV function calculates the inverse of the Fisher Transformation and
// returns a value between -1 and +1. The syntax of the function is:
//
// FISHERINV(y)
//
func (fn *formulaFuncs) FISHERINV(argsList *list.List) formulaArg {
if argsList.Len() != 1 {
return newErrorFormulaArg(formulaErrorVALUE, "FISHERINV requires 1 numeric argument")
}
token := argsList.Front().Value.(formulaArg)
switch token.Type {
case ArgString:
arg := token.ToNumber()
if arg.Type == ArgNumber {
return newNumberFormulaArg((math.Exp(2*arg.Number) - 1) / (math.Exp(2*arg.Number) + 1))
}
case ArgNumber:
return newNumberFormulaArg((math.Exp(2*token.Number) - 1) / (math.Exp(2*token.Number) + 1))
}
return newErrorFormulaArg(formulaErrorVALUE, "FISHERINV requires 1 numeric argument")
}

// GAMMA function returns the value of the Gamma Function, Γ(n), for a
// specified number, n. The syntax of the function is:
//
// GAMMA(number)
//
func (fn *formulaFuncs) GAMMA(argsList *list.List) formulaArg {
if argsList.Len() != 1 {
return newErrorFormulaArg(formulaErrorVALUE, "GAMMA requires 1 numeric argument")
}
token := argsList.Front().Value.(formulaArg)
switch token.Type {
case ArgString:
arg := token.ToNumber()
if arg.Type == ArgNumber {
if arg.Number <= 0 {
return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
}
return newNumberFormulaArg(math.Gamma(arg.Number))
}
case ArgNumber:
if token.Number <= 0 {
return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
}
return newNumberFormulaArg(math.Gamma(token.Number))
}
return newErrorFormulaArg(formulaErrorVALUE, "GAMMA requires 1 numeric argument")
}

// GAMMALN function returns the natural logarithm of the Gamma Function, Γ
// (n). The syntax of the function is:
//
// GAMMALN(x)
//
func (fn *formulaFuncs) GAMMALN(argsList *list.List) formulaArg {
if argsList.Len() != 1 {
return newErrorFormulaArg(formulaErrorVALUE, "GAMMALN requires 1 numeric argument")
}
token := argsList.Front().Value.(formulaArg)
switch token.Type {
case ArgString:
arg := token.ToNumber()
if arg.Type == ArgNumber {
if arg.Number <= 0 {
return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
}
return newNumberFormulaArg(math.Log(math.Gamma(arg.Number)))
}
case ArgNumber:
if token.Number <= 0 {
return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
}
return newNumberFormulaArg(math.Log(math.Gamma(token.Number)))
}
return newErrorFormulaArg(formulaErrorVALUE, "GAMMALN requires 1 numeric argument")
}

// MAX function returns the largest value from a supplied set of numeric
// values. The syntax of the function is:
//
Expand All @@ -3203,7 +3341,10 @@ func (fn *formulaFuncs) MAX(argsList *list.List) formulaArg {
return fn.max(false, argsList)
}

// MAXA function returns the largest value from a supplied set of numeric values, while counting text and the logical value FALSE as the value 0 and counting the logical value TRUE as the value 1. The syntax of the function is:
// MAXA function returns the largest value from a supplied set of numeric
// values, while counting text and the logical value FALSE as the value 0 and
// counting the logical value TRUE as the value 1. The syntax of the function
// is:
//
// MAXA(number1,[number2],...)
//
Expand Down Expand Up @@ -3317,6 +3458,112 @@ func (fn *formulaFuncs) MEDIAN(argsList *list.List) formulaArg {
return newNumberFormulaArg(median)
}

// MIN function returns the smallest value from a supplied set of numeric
// values. The syntax of the function is:
//
// MIN(number1,[number2],...)
//
func (fn *formulaFuncs) MIN(argsList *list.List) formulaArg {
if argsList.Len() == 0 {
return newErrorFormulaArg(formulaErrorVALUE, "MIN requires at least 1 argument")
}
return fn.min(false, argsList)
}

// MINA function returns the smallest value from a supplied set of numeric
// values, while counting text and the logical value FALSE as the value 0 and
// counting the logical value TRUE as the value 1. The syntax of the function
// is:
//
// MINA(number1,[number2],...)
//
func (fn *formulaFuncs) MINA(argsList *list.List) formulaArg {
if argsList.Len() == 0 {
return newErrorFormulaArg(formulaErrorVALUE, "MINA requires at least 1 argument")
}
return fn.min(true, argsList)
}

// min is an implementation of the formula function MIN and MINA.
func (fn *formulaFuncs) min(mina bool, argsList *list.List) formulaArg {
min := math.MaxFloat64
for token := argsList.Front(); token != nil; token = token.Next() {
arg := token.Value.(formulaArg)
switch arg.Type {
case ArgString:
if !mina && (arg.Value() == "TRUE" || arg.Value() == "FALSE") {
continue
} else {
num := arg.ToBool()
if num.Type == ArgNumber && num.Number < min {
min = num.Number
continue
}
}
num := arg.ToNumber()
if num.Type != ArgError && num.Number < min {
min = num.Number
}
case ArgNumber:
if arg.Number < min {
min = arg.Number
}
case ArgList, ArgMatrix:
for _, row := range arg.ToList() {
switch row.Type {
case ArgString:
if !mina && (row.Value() == "TRUE" || row.Value() == "FALSE") {
continue
} else {
num := row.ToBool()
if num.Type == ArgNumber && num.Number < min {
min = num.Number
continue
}
}
num := row.ToNumber()
if num.Type != ArgError && num.Number < min {
min = num.Number
}
case ArgNumber:
if row.Number < min {
min = row.Number
}
}
}
case ArgError:
return arg
}
}
if min == math.MaxFloat64 {
min = 0
}
return newNumberFormulaArg(min)
}

// PERMUT function calculates the number of permutations of a specified number
// of objects from a set of objects. The syntax of the function is:
//
// PERMUT(number,number_chosen)
//
func (fn *formulaFuncs) PERMUT(argsList *list.List) formulaArg {
if argsList.Len() != 2 {
return newErrorFormulaArg(formulaErrorVALUE, "PERMUT requires 2 numeric arguments")
}
number := argsList.Front().Value.(formulaArg).ToNumber()
chosen := argsList.Back().Value.(formulaArg).ToNumber()
if number.Type != ArgNumber {
return number
}
if chosen.Type != ArgNumber {
return chosen
}
if number.Number < chosen.Number {
return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
}
return newNumberFormulaArg(math.Round(fact(number.Number) / fact(number.Number-chosen.Number)))
}

// Information Functions

// ISBLANK function tests if a specified cell is blank (empty) and if so,
Expand Down Expand Up @@ -3356,7 +3603,11 @@ func (fn *formulaFuncs) ISERR(argsList *list.List) formulaArg {
token := argsList.Front().Value.(formulaArg)
result := "FALSE"
if token.Type == ArgError {
for _, errType := range []string{formulaErrorDIV, formulaErrorNAME, formulaErrorNUM, formulaErrorVALUE, formulaErrorREF, formulaErrorNULL, formulaErrorSPILL, formulaErrorCALC, formulaErrorGETTINGDATA} {
for _, errType := range []string{
formulaErrorDIV, formulaErrorNAME, formulaErrorNUM,
formulaErrorVALUE, formulaErrorREF, formulaErrorNULL,
formulaErrorSPILL, formulaErrorCALC, formulaErrorGETTINGDATA,
} {
if errType == token.String {
result = "TRUE"
}
Expand All @@ -3378,7 +3629,11 @@ func (fn *formulaFuncs) ISERROR(argsList *list.List) formulaArg {
token := argsList.Front().Value.(formulaArg)
result := "FALSE"
if token.Type == ArgError {
for _, errType := range []string{formulaErrorDIV, formulaErrorNAME, formulaErrorNA, formulaErrorNUM, formulaErrorVALUE, formulaErrorREF, formulaErrorNULL, formulaErrorSPILL, formulaErrorCALC, formulaErrorGETTINGDATA} {
for _, errType := range []string{
formulaErrorDIV, formulaErrorNAME, formulaErrorNA, formulaErrorNUM,
formulaErrorVALUE, formulaErrorREF, formulaErrorNULL, formulaErrorSPILL,
formulaErrorCALC, formulaErrorGETTINGDATA,
} {
if errType == token.String {
result = "TRUE"
}
Expand Down Expand Up @@ -4413,5 +4668,6 @@ func (fn *formulaFuncs) ENCODEURL(argsList *list.List) formulaArg {
if argsList.Len() != 1 {
return newErrorFormulaArg(formulaErrorVALUE, "ENCODEURL requires 1 argument")
}
return newStringFormulaArg(strings.Replace(url.QueryEscape(argsList.Front().Value.(formulaArg).Value()), "+", "%20", -1))
token := argsList.Front().Value.(formulaArg).Value()
return newStringFormulaArg(strings.Replace(url.QueryEscape(token), "+", "%20", -1))
}
Loading

0 comments on commit bddea12

Please sign in to comment.