-
Notifications
You must be signed in to change notification settings - Fork 20
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #11 from pytroll/feature-fast-modis
Add cviirs-based fast modis interpolator
- Loading branch information
Showing
7 changed files
with
309 additions
and
4 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,228 @@ | ||
#!/usr/bin/env python | ||
# -*- coding: utf-8 -*- | ||
|
||
# Copyright (c) 2018 PyTroll community | ||
|
||
# Author(s): | ||
|
||
# Martin Raspaud <[email protected]> | ||
|
||
# This program is free software: you can redistribute it and/or modify | ||
# it under the terms of the GNU General Public License as published by | ||
# the Free Software Foundation, either version 3 of the License, or | ||
# (at your option) any later version. | ||
|
||
# This program is distributed in the hope that it will be useful, | ||
# but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | ||
# GNU General Public License for more details. | ||
|
||
# You should have received a copy of the GNU General Public License | ||
# along with this program. If not, see <http://www.gnu.org/licenses/>. | ||
|
||
"""Interpolation of geographical tiepoints using the second order interpolation | ||
scheme implemented in the CVIIRS software, as described here: | ||
Compact VIIRS SDR Product Format User Guide (V1J) | ||
http://www.eumetsat.int/website/wcm/idc/idcplg?IdcService=GET_FILE&dDocName=PDF_DMT_708025&RevisionSelectionMethod=LatestReleased&Rendition=Web | ||
""" | ||
|
||
import xarray as xr | ||
import dask.array as da | ||
import numpy as np | ||
|
||
# TODO on interpolation: | ||
# - go over to cartesian coordinates for tricky situation (eg poles, dateline) | ||
|
||
R = 6371. | ||
# Aqua scan width and altitude in km | ||
scan_width = 10.00017 | ||
H = 705. | ||
|
||
|
||
def compute_phi(zeta): | ||
return np.arcsin(R * np.sin(zeta) / (R + H)) | ||
|
||
|
||
def compute_theta(zeta, phi): | ||
return zeta - phi | ||
|
||
|
||
def compute_zeta(phi): | ||
return np.arcsin((R + H) * np.sin(phi) / R) | ||
|
||
|
||
def compute_expansion_alignment(satz_a, satz_b, satz_c, satz_d): | ||
"""All angles in radians.""" | ||
zeta_a = satz_a | ||
zeta_b = satz_b | ||
|
||
phi_a = compute_phi(zeta_a) | ||
phi_b = compute_phi(zeta_b) | ||
theta_a = compute_theta(zeta_a, phi_a) | ||
theta_b = compute_theta(zeta_b, phi_b) | ||
phi = (phi_a + phi_b) / 2 | ||
zeta = compute_zeta(phi) | ||
theta = compute_theta(zeta, phi) | ||
|
||
c_expansion = 4 * (((theta_a + theta_b) / 2 - theta) / (theta_a - theta_b)) | ||
|
||
sin_beta_2 = scan_width / (2 * H) | ||
|
||
d = ((R + H) / R * np.cos(phi) - np.cos(zeta)) * sin_beta_2 | ||
e = np.cos(zeta) - np.sqrt(np.cos(zeta) ** 2 - d ** 2) | ||
|
||
c_alignment = 4 * e * np.sin(zeta) / (theta_a - theta_b) | ||
|
||
return c_expansion, c_alignment | ||
|
||
|
||
def get_corners(arr): | ||
arr_a = arr[:, :-1, :-1] | ||
arr_b = arr[:, :-1, 1:] | ||
arr_c = arr[:, 1:, 1:] | ||
arr_d = arr[:, 1:, :-1] | ||
return arr_a, arr_b, arr_c, arr_d | ||
|
||
|
||
class ModisInterpolator(): | ||
|
||
def __init__(self, cres, fres): | ||
if cres == 1000: | ||
self.cscan_len = 10 | ||
self.cscan_width = 1 | ||
self.cscan_full_width = 1354 | ||
elif cres == 5000: | ||
self.cscan_len = 2 | ||
self.cscan_width = 5 | ||
self.cscan_full_width = 271 | ||
|
||
if fres == 250: | ||
self.fscan_width = 4 * self.cscan_width | ||
self.fscan_full_width = 1354 * 4 | ||
self.fscan_len = 4 * 10 // self.cscan_len | ||
self.get_coords = self._get_coords_1km | ||
self.expand_tiepoint_array = self._expand_tiepoint_array_1km | ||
elif fres == 500: | ||
self.fscan_width = 2 * self.cscan_width | ||
self.fscan_full_width = 1354 * 2 | ||
self.fscan_len = 2 * 10 // self.cscan_len | ||
self.get_coords = self._get_coords_1km | ||
self.expand_tiepoint_array = self._expand_tiepoint_array_1km | ||
elif fres == 1000: | ||
self.fscan_width = 1 * self.cscan_width | ||
self.fscan_full_width = 1354 | ||
self.fscan_len = 1 * 10 // self.cscan_len | ||
self.get_coords = self._get_coords_5km | ||
self.expand_tiepoint_array = self._expand_tiepoint_array_5km | ||
|
||
def _expand_tiepoint_array_1km(self, arr, lines, cols): | ||
arr = da.repeat(arr, lines, axis=1) | ||
arr = da.concatenate((arr[:, :lines//2, :], arr, arr[:, -(lines//2):, :]), axis=1) | ||
arr = da.repeat(arr.reshape((-1, self.cscan_full_width - 1)), cols, axis=1) | ||
return da.hstack((arr, arr[:, -cols:])) | ||
|
||
def _get_coords_1km(self, scans): | ||
y = (np.arange((self.cscan_len + 1) * self.fscan_len) % self.fscan_len) + .5 | ||
y = y[self.fscan_len // 2:-(self.fscan_len // 2)] | ||
y[:self.fscan_len//2] = np.arange(-self.fscan_len/2 + .5, 0) | ||
y[-(self.fscan_len//2):] = np.arange(self.fscan_len + .5, self.fscan_len * 3 / 2) | ||
y = np.tile(y, scans) | ||
|
||
x = np.arange(self.fscan_full_width) % self.fscan_width | ||
x[-self.fscan_width:] = np.arange(self.fscan_width, self.fscan_width * 2) | ||
return x, y | ||
|
||
def _expand_tiepoint_array_5km(self, arr, lines, cols): | ||
arr = da.repeat(arr, lines * 2, axis=1) | ||
arr = da.repeat(arr.reshape((-1, self.cscan_full_width - 1)), cols, axis=1) | ||
return da.hstack((arr[:, :2], arr, arr[:, -2:])) | ||
|
||
def _get_coords_5km(self, scans): | ||
y = np.arange(self.fscan_len * self.cscan_len) - 2 | ||
y = np.tile(y, scans) | ||
|
||
x = (np.arange(self.fscan_full_width) - 2) % self.fscan_width | ||
x[0] = -2 | ||
x[1] = -1 | ||
x[-2] = 5 | ||
x[-1] = 6 | ||
return x, y | ||
|
||
def interpolate(self, lon1, lat1, satz1): | ||
cscan_len = self.cscan_len | ||
cscan_full_width = self.cscan_full_width | ||
|
||
fscan_width = self.fscan_width | ||
fscan_len = self.fscan_len | ||
|
||
scans = lat1.shape[0] // cscan_len | ||
latattrs = lat1.attrs | ||
lonattrs = lon1.attrs | ||
dims = lat1.dims | ||
lat1 = lat1.data | ||
lon1 = lon1.data | ||
satz1 = satz1.data | ||
|
||
lat1 = lat1.reshape((-1, cscan_len, cscan_full_width)) | ||
lon1 = lon1.reshape((-1, cscan_len, cscan_full_width)) | ||
satz1 = satz1.reshape((-1, cscan_len, cscan_full_width)) | ||
|
||
lats_a, lats_b, lats_c, lats_d = get_corners(lat1) | ||
lons_a, lons_b, lons_c, lons_d = get_corners(lon1) | ||
satz_a, satz_b, satz_c, satz_d = get_corners(da.deg2rad(satz1)) | ||
c_exp, c_ali = compute_expansion_alignment(satz_a, satz_b, satz_c, satz_d) | ||
|
||
x, y = self.get_coords(scans) | ||
i_rs, i_rt = da.meshgrid(x, y) | ||
|
||
p_os = 0 | ||
p_ot = 0 | ||
|
||
s_s = (p_os + i_rs) * 1. / fscan_width | ||
s_t = (p_ot + i_rt) * 1. / fscan_len | ||
|
||
cols = fscan_width | ||
lines = fscan_len | ||
|
||
c_exp_full = self.expand_tiepoint_array(c_exp, lines, cols) | ||
c_ali_full = self.expand_tiepoint_array(c_ali, lines, cols) | ||
|
||
a_track = s_t | ||
a_scan = (s_s + s_s * (1 - s_s) * c_exp_full + s_t*(1 - s_t) * c_ali_full) | ||
|
||
lats_a = self.expand_tiepoint_array(lats_a, lines, cols) | ||
lats_b = self.expand_tiepoint_array(lats_b, lines, cols) | ||
lats_c = self.expand_tiepoint_array(lats_c, lines, cols) | ||
lats_d = self.expand_tiepoint_array(lats_d, lines, cols) | ||
lons_a = self.expand_tiepoint_array(lons_a, lines, cols) | ||
lons_b = self.expand_tiepoint_array(lons_b, lines, cols) | ||
lons_c = self.expand_tiepoint_array(lons_c, lines, cols) | ||
lons_d = self.expand_tiepoint_array(lons_d, lines, cols) | ||
|
||
lats_1 = (1 - a_scan) * lats_a + a_scan * lats_b | ||
lats_2 = (1 - a_scan) * lats_d + a_scan * lats_c | ||
lats = (1 - a_track) * lats_1 + a_track * lats_2 | ||
|
||
lons_1 = (1 - a_scan) * lons_a + a_scan * lons_b | ||
lons_2 = (1 - a_scan) * lons_d + a_scan * lons_c | ||
lons = (1 - a_track) * lons_1 + a_track * lons_2 | ||
|
||
return xr.DataArray(lons, attrs=lonattrs, dims=dims), xr.DataArray(lats, attrs=latattrs, dims=dims) | ||
|
||
|
||
def modis_1km_to_250m(lon1, lat1, satz1): | ||
|
||
interp = ModisInterpolator(1000, 250) | ||
return interp.interpolate(lon1, lat1, satz1) | ||
|
||
|
||
def modis_1km_to_500m(lon1, lat1, satz1): | ||
|
||
interp = ModisInterpolator(1000, 500) | ||
return interp.interpolate(lon1, lat1, satz1) | ||
|
||
|
||
def modis_5km_to_1km(lon1, lat1, satz1): | ||
|
||
interp = ModisInterpolator(5000, 1000) | ||
return interp.interpolate(lon1, lat1, satz1) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,75 @@ | ||
#!/usr/bin/env python | ||
# -*- coding: utf-8 -*- | ||
|
||
# Copyright (c) 2018 Martin Raspaud | ||
|
||
# Author(s): | ||
|
||
# Martin Raspaud <[email protected]> | ||
|
||
# This program is free software: you can redistribute it and/or modify | ||
# it under the terms of the GNU General Public License as published by | ||
# the Free Software Foundation, either version 3 of the License, or | ||
# (at your option) any later version. | ||
|
||
# This program is distributed in the hope that it will be useful, | ||
# but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | ||
# GNU General Public License for more details. | ||
|
||
# You should have received a copy of the GNU General Public License | ||
# along with this program. If not, see <http://www.gnu.org/licenses/>. | ||
|
||
import unittest | ||
import numpy as np | ||
import h5py | ||
import os | ||
from geotiepoints.modisinterpolator import modis_1km_to_250m, modis_1km_to_500m, modis_5km_to_1km | ||
FILENAME_DATA = os.path.join( | ||
os.path.dirname(__file__), '../../testdata/modis_test_data.h5') | ||
|
||
def to_da(arr): | ||
import xarray as xr | ||
import dask.array as da | ||
|
||
return xr.DataArray(da.from_array(arr, chunks=4096), dims=['y', 'x']) | ||
|
||
class TestModisInterpolator(unittest.TestCase): | ||
def test_modis(self): | ||
h5f = h5py.File(FILENAME_DATA, 'r') | ||
lon1 = to_da(h5f['lon_1km']) | ||
lat1 = to_da(h5f['lat_1km']) | ||
satz1 = to_da(h5f['satz_1km']) | ||
|
||
lon250 = to_da(h5f['lon_250m']) | ||
lon500 = to_da(h5f['lon_500m']) | ||
|
||
lat250 = to_da(h5f['lat_250m']) | ||
lat500 = to_da(h5f['lat_500m']) | ||
|
||
lons, lats = modis_1km_to_250m(lon1, lat1, satz1) | ||
self.assertTrue(np.allclose(lon250, lons, atol=1e-2)) | ||
self.assertTrue(np.allclose(lat250, lats, atol=1e-2)) | ||
|
||
lons, lats = modis_1km_to_500m(lon1, lat1, satz1) | ||
self.assertTrue(np.allclose(lon500, lons, atol=1e-2)) | ||
self.assertTrue(np.allclose(lat500, lats, atol=1e-2)) | ||
|
||
lat5 = lat1[2::5, 2::5] | ||
lon5 = lon1[2::5, 2::5] | ||
|
||
satz5 = satz1[2::5, 2::5] | ||
lons, lats = modis_5km_to_1km(lon5, lat5, satz5) | ||
self.assertTrue(np.allclose(lon1, lons, atol=1e-2)) | ||
self.assertTrue(np.allclose(lat1, lats, atol=1e-2)) | ||
|
||
def suite(): | ||
"""The suite for MODIS""" | ||
loader = unittest.TestLoader() | ||
mysuite = unittest.TestSuite() | ||
mysuite.addTest(loader.loadTestsFromTestCase(TestModisInterpolator)) | ||
|
||
return mysuite | ||
|
||
if __name__ == "__main__": | ||
unittest.main() |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Binary file not shown.