Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[proto][tests] Added ref functions for h/v flips #6876

Merged
merged 4 commits into from
Nov 1, 2022
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
79 changes: 66 additions & 13 deletions test/prototype_transforms_kernel_infos.py
Original file line number Diff line number Diff line change
Expand Up @@ -145,6 +145,29 @@ def sample_inputs_horizontal_flip_video():
yield ArgsKwargs(video_loader)


def reference_horizontal_flip_bounding_box(bounding_box, *, format, spatial_size):
affine_matrix = np.array(
[
[-1, 0, spatial_size[1]],
[0, 1, 0],
],
dtype="float32",
)

expected_bboxes = reference_affine_bounding_box_helper(bounding_box, format=format, affine_matrix=affine_matrix)

return expected_bboxes


def reference_inputs_flip_bounding_box():
for bounding_box_loader in make_bounding_box_loaders(extra_dims=[()]):
yield ArgsKwargs(
bounding_box_loader,
format=bounding_box_loader.format,
spatial_size=bounding_box_loader.spatial_size,
)


KERNEL_INFOS.extend(
[
KernelInfo(
Expand All @@ -158,6 +181,8 @@ def sample_inputs_horizontal_flip_video():
KernelInfo(
F.horizontal_flip_bounding_box,
sample_inputs_fn=sample_inputs_horizontal_flip_bounding_box,
reference_fn=reference_horizontal_flip_bounding_box,
reference_inputs_fn=reference_inputs_flip_bounding_box,
),
KernelInfo(
F.horizontal_flip_mask,
Expand Down Expand Up @@ -409,15 +434,13 @@ def _compute_affine_matrix(angle, translate, scale, shear, center):
return true_matrix


def reference_affine_bounding_box(bounding_box, *, format, spatial_size, angle, translate, scale, shear, center=None):
if center is None:
center = [s * 0.5 for s in spatial_size[::-1]]

def transform(bbox):
affine_matrix = _compute_affine_matrix(angle, translate, scale, shear, center)
affine_matrix = affine_matrix[:2, :]

bbox_xyxy = F.convert_format_bounding_box(bbox, old_format=format, new_format=features.BoundingBoxFormat.XYXY)
def reference_affine_bounding_box_helper(bounding_box, *, format, affine_matrix):
def transform(bbox, affine_matrix_, format_):
# Go to float before converting to prevent precision loss in case of CXCYWH -> XYXY and W or H is 1
in_dtype = bbox.dtype
bbox_xyxy = F.convert_format_bounding_box(
bbox.float(), old_format=format_, new_format=features.BoundingBoxFormat.XYXY, inplace=True
)
points = np.array(
[
[bbox_xyxy[0].item(), bbox_xyxy[1].item(), 1.0],
Expand All @@ -426,22 +449,24 @@ def transform(bbox):
[bbox_xyxy[2].item(), bbox_xyxy[3].item(), 1.0],
]
)
transformed_points = np.matmul(points, affine_matrix.T)
transformed_points = np.matmul(points, affine_matrix_.T)
out_bbox = torch.tensor(
[
np.min(transformed_points[:, 0]).item(),
np.min(transformed_points[:, 1]).item(),
np.max(transformed_points[:, 0]).item(),
np.max(transformed_points[:, 1]).item(),
],
dtype=bbox.dtype,
)
return F.convert_format_bounding_box(out_bbox, old_format=features.BoundingBoxFormat.XYXY, new_format=format)
out_bbox = F.convert_format_bounding_box(
out_bbox, old_format=features.BoundingBoxFormat.XYXY, new_format=format, inplace=True
)
return out_bbox.to(dtype=in_dtype)

if bounding_box.ndim < 2:
bounding_box = [bounding_box]

expected_bboxes = [transform(bbox) for bbox in bounding_box]
expected_bboxes = [transform(bbox, affine_matrix, format) for bbox in bounding_box]
if len(expected_bboxes) > 1:
expected_bboxes = torch.stack(expected_bboxes)
else:
Expand All @@ -450,6 +475,18 @@ def transform(bbox):
return expected_bboxes


def reference_affine_bounding_box(bounding_box, *, format, spatial_size, angle, translate, scale, shear, center=None):
if center is None:
center = [s * 0.5 for s in spatial_size[::-1]]

affine_matrix = _compute_affine_matrix(angle, translate, scale, shear, center)
affine_matrix = affine_matrix[:2, :]

expected_bboxes = reference_affine_bounding_box_helper(bounding_box, format=format, affine_matrix=affine_matrix)

return expected_bboxes


def reference_inputs_affine_bounding_box():
for bounding_box_loader, affine_kwargs in itertools.product(
make_bounding_box_loaders(extra_dims=[()]),
Expand Down Expand Up @@ -643,6 +680,20 @@ def sample_inputs_vertical_flip_video():
yield ArgsKwargs(video_loader)


def reference_vertical_flip_bounding_box(bounding_box, *, format, spatial_size):
affine_matrix = np.array(
[
[1, 0, 0],
[0, -1, spatial_size[0]],
],
dtype="float32",
)

expected_bboxes = reference_affine_bounding_box_helper(bounding_box, format=format, affine_matrix=affine_matrix)

return expected_bboxes


KERNEL_INFOS.extend(
[
KernelInfo(
Expand All @@ -656,6 +707,8 @@ def sample_inputs_vertical_flip_video():
KernelInfo(
F.vertical_flip_bounding_box,
sample_inputs_fn=sample_inputs_vertical_flip_bounding_box,
reference_fn=reference_vertical_flip_bounding_box,
reference_inputs_fn=reference_inputs_flip_bounding_box,
),
KernelInfo(
F.vertical_flip_mask,
Expand Down