Skip to content

Commit

Permalink
Add ResNet, AlexNet, and VGG model definitions and model zoo
Browse files Browse the repository at this point in the history
  • Loading branch information
colesbury committed Jan 6, 2017
1 parent 3ed4831 commit 236d645
Show file tree
Hide file tree
Showing 5 changed files with 389 additions and 0 deletions.
3 changes: 3 additions & 0 deletions torchvision/models/__init__.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,3 @@
from .resnet import resnet18, resnet34, resnet50, resnet101, resnet152, ResNet
from .alexnet import alexnet, AlexNet
from .vgg import vgg11, vgg13, vgg16, vgg19
47 changes: 47 additions & 0 deletions torchvision/models/alexnet.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,47 @@
import torch.nn as nn
from . import model_zoo


class AlexNet(nn.Container):
def __init__(self, num_classes=1000):
super(AlexNet, self).__init__()
self.features = nn.Sequential(
nn.Conv2d(3, 64, kernel_size=11, stride=4, padding=2),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=3, stride=2),
nn.Conv2d(64, 192, kernel_size=5, padding=2),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=3, stride=2),
nn.Conv2d(192, 384, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(384, 256, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(256, 256, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=3, stride=2),
)
self.classifier = nn.Sequential(
nn.Dropout(),
nn.Linear(256 * 6 * 6, 4096),
nn.ReLU(inplace=True),
nn.Dropout(),
nn.Linear(4096, 4096),
nn.ReLU(inplace=True),
nn.Linear(4096, num_classes),
)

def forward(self, x):
x = self.features(x)
x = x.view(x.size(0), 256 * 6 * 6)
x = self.classifier(x)
return x


def alexnet(pretrained=False):
r"""AlexNet model architecture from the "One weird trick" paper.
https://arxiv.org/abs/1404.5997
"""
model = AlexNet()
if pretrained:
model.load_state_dict(model_zoo.load('alexnet'))
return model
94 changes: 94 additions & 0 deletions torchvision/models/model_zoo.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,94 @@
import torch

import hashlib
import os
import re
import shutil
import sys
import tempfile
if sys.version_info[0] == 2:
from urlparse import urlparse
from urllib2 import urlopen
else:
from urllib.request import urlopen
from urllib.parse import urlparse
try:
from tqdm import tqdm
except ImportError:
tqdm = None # defined below


DEFAULT_MODEL_DIR = os.path.expanduser('~/.torch/models')

models = {
'resnet18': 'https://s3.amazonaws.com/pytorch/models/resnet18-5c106cde.pth',
'alexnet': 'https://s3.amazonaws.com/pytorch/models/alexnet-owt-4df8aa71.pth',
}

# matches bfd8deac from resnet18-bfd8deac.pth
HASH_REGEX = re.compile(r'-([a-f0-9]*)\.')


def load(model_name):
r"""Returns the state_dict for the given model name"""
return load_url(models[model_name])


def load_url(url, model_dir=None):
if model_dir is None:
model_dir = os.getenv('TORCH_MODEL_ZOO', DEFAULT_MODEL_DIR)
if not os.path.exists(model_dir):
os.makedirs(model_dir)
parts = urlparse(url)
filename = os.path.basename(parts.path)
cached_file = os.path.join(model_dir, filename)
if not os.path.exists(cached_file):
sys.stderr.write('Downloading: "{}" to {}\n'.format(url, cached_file))
hash_prefix = HASH_REGEX.search(filename).group(1)
download_url_to_file(url, cached_file, hash_prefix)
return torch.load(cached_file)


def download_url_to_file(url, filename, hash_prefix):
u = urlopen(url)
meta = u.info()
if hasattr(meta, 'getheaders'):
file_size = int(meta.getheaders("Content-Length")[0])
else:
file_size = int(meta.get_all("Content-Length")[0])

with tempfile.NamedTemporaryFile(delete=False) as f, tqdm(total=file_size) as pbar:
while True:
buffer = u.read(8192)
if len(buffer) == 0:
break
f.write(buffer)
pbar.update(len(buffer))

f.seek(0)
sha256 = hashlib.sha256(f.read()).hexdigest()
f.close()
if sha256[:len(hash_prefix)] == hash_prefix:
shutil.move(f.name, filename)
else:
raise RuntimeError('invalid hash value (expected "{}", got "{}")'
.format(hash_prefix, sha256))


if tqdm is None:
# fake tqdm if it's not installed
class tqdm(object):
def __init__(self, total):
self.total = total
self.n = 0

def update(self, n):
self.n += n
sys.stderr.write("\r{0:.1f}%".format(100 * self.n / float(self.total)))
sys.stderr.flush()

def __enter__(self):
return self

def __exit__(self, exc_type, exc_val, exc_tb):
sys.stderr.write('\n')
166 changes: 166 additions & 0 deletions torchvision/models/resnet.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,166 @@
import torch.nn as nn
import math
from . import model_zoo


__all__ = ['ResNet', 'resnet18', 'resnet34', 'resnet50', 'resnet101',
'resnet152']


def conv3x3(in_planes, out_planes, stride=1):
"3x3 convolution with padding"
return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
padding=1, bias=False)


class BasicBlock(nn.Container):
expansion = 1

def __init__(self, inplanes, planes, stride=1, downsample=None):
super(BasicBlock, self).__init__()
self.conv1 = conv3x3(inplanes, planes, stride)
self.bn1 = nn.BatchNorm2d(planes)
self.relu = nn.ReLU(inplace=True)
self.conv2 = conv3x3(planes, planes)
self.bn2 = nn.BatchNorm2d(planes)
self.downsample = downsample
self.stride = stride

def forward(self, x):
residual = x

out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)

out = self.conv2(out)
out = self.bn2(out)

if self.downsample is not None:
residual = self.downsample(x)

out += residual
out = self.relu(out)

return out


class Bottleneck(nn.Container):
expansion = 4

def __init__(self, inplanes, planes, stride=1, downsample=None):
super(Bottleneck, self).__init__()
self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False)
self.bn1 = nn.BatchNorm2d(planes)
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride,
padding=1, bias=False)
self.bn2 = nn.BatchNorm2d(planes)
self.conv3 = nn.Conv2d(planes, planes * 4, kernel_size=1, bias=False)
self.bn3 = nn.BatchNorm2d(planes * 4)
self.relu = nn.ReLU(inplace=True)
self.downsample = downsample
self.stride = stride

def forward(self, x):
residual = x

out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)

out = self.conv2(out)
out = self.bn2(out)
out = self.relu(out)

out = self.conv3(out)
out = self.bn3(out)

if self.downsample is not None:
residual = self.downsample(x)

out += residual
out = self.relu(out)

return out


class ResNet(nn.Container):
def __init__(self, block, layers, num_classes=1000):
self.inplanes = 64
super(ResNet, self).__init__()
self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3,
bias=False)
self.bn1 = nn.BatchNorm2d(64)
self.relu = nn.ReLU(inplace=True)
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
self.layer1 = self._make_layer(block, 64, layers[0])
self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
self.layer4 = self._make_layer(block, 512, layers[3], stride=2)
self.avgpool = nn.AvgPool2d(7)
self.fc = nn.Linear(512 * block.expansion, num_classes)

for m in self.modules():
if isinstance(m, nn.Conv2d):
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
m.weight.data.normal_(0, math.sqrt(2. / n))
elif isinstance(m, nn.BatchNorm2d):
m.weight.data.fill_(1)
m.bias.data.zero_()

def _make_layer(self, block, planes, blocks, stride=1):
downsample = None
if stride != 1 or self.inplanes != planes * block.expansion:
downsample = nn.Sequential(
nn.Conv2d(self.inplanes, planes * block.expansion,
kernel_size=1, stride=stride, bias=False),
nn.BatchNorm2d(planes * block.expansion),
)

layers = []
layers.append(block(self.inplanes, planes, stride, downsample))
self.inplanes = planes * block.expansion
for i in range(1, blocks):
layers.append(block(self.inplanes, planes))

return nn.Sequential(*layers)

def forward(self, x):
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
x = self.maxpool(x)

x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)

x = self.avgpool(x)
x = x.view(x.size(0), -1)
x = self.fc(x)

return x


def resnet18(pretrained=False):
model = ResNet(BasicBlock, [2, 2, 2, 2])
if pretrained:
model.load_state_dict(model_zoo.load('resnet18'))
return model


def resnet34():
return ResNet(BasicBlock, [3, 4, 6, 3])


def resnet50():
return ResNet(Bottleneck, [3, 4, 6, 3])


def resnet101():
return ResNet(Bottleneck, [3, 4, 23, 3])


def resnet152():
return ResNet(Bottleneck, [3, 8, 36, 3])
79 changes: 79 additions & 0 deletions torchvision/models/vgg.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,79 @@
import torch.nn as nn
from . import model_zoo


class VGG(nn.Container):
def __init__(self, features):
super(VGG, self).__init__()
self.features = features
self.classifier = nn.Sequential(
nn.Dropout(),
nn.Linear(512 * 7 * 7, 4096),
nn.ReLU(True),
nn.Dropout(),
nn.Linear(4096, 4096),
nn.ReLU(True),
nn.Linear(4096, 1000),
)

def forward(self, x):
x = self.features(x)
x = x.view(x.size(0), -1)
x = self.classifier(x)
return x


def make_layers(cfg, batch_norm=False):
layers = []
in_channels = 3
for v in cfg:
if v == 'M':
layers += [nn.MaxPool2d(kernel_size=2, stride=2)]
else:
conv2d = nn.Conv2d(in_channels, v, kernel_size=3, padding=1)
if batch_norm:
layers += [conv2d, nn.BatchNorm2d(v), nn.ReLU(inplace=True)]
else:
layers += [conv2d, nn.ReLU(inplace=True)]
in_channels = v
return nn.Sequential(*layers)


cfg = {
'A': [64, 'M', 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M'],
'B': [64, 64, 'M', 128, 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M'],
'D': [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 'M', 512, 512, 512, 'M', 512, 512, 512, 'M'],
'E': [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 256, 'M', 512, 512, 512, 512, 'M', 512, 512, 512, 512, 'M'],
}


def vgg11():
return VGG(make_layers(cfg['A']))


def vgg11_bn():
return VGG(make_layers(cfg['A'], batch_norm=True))


def vgg13():
return VGG(make_layers(cfg['B']))


def vgg13_bn():
return VGG(make_layers(cfg['B'], batch_norm=True))


def vgg16():
return VGG(make_layers(cfg['D']))


def vgg16_bn():
return VGG(make_layers(cfg['D'], batch_norm=True))


def vgg19():
return VGG(make_layers(cfg['E']))


def vgg19_bn():
return VGG(make_layers(cfg['E'], batch_norm=True))

0 comments on commit 236d645

Please sign in to comment.