Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

feat: Added cfg.cudnn_deterministic_mode flag #2367

Merged
merged 3 commits into from
Feb 11, 2025
Merged
Show file tree
Hide file tree
Changes from 2 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 3 additions & 1 deletion recipes/dev/early_exit_finetune_distributed.py
Original file line number Diff line number Diff line change
Expand Up @@ -233,7 +233,9 @@ def __init__(self, cfg: DictConfig) -> None:

# These are public properties which are updated by the checkpoint loader
# when ``resume_from_checkpoint`` is `True` or validated in tests
self.seed = training.set_seed(seed=cfg.seed)
self.seed = training.set_seed(
seed=cfg.seed, debug_mode=cfg.get("deterministic_mode", None)
)
self.epochs_run = 0
self.total_epochs = cfg.epochs
self.max_steps_per_epoch = cfg.max_steps_per_epoch
Expand Down
2 changes: 1 addition & 1 deletion recipes/dev/generate_v2.py
Original file line number Diff line number Diff line change
Expand Up @@ -78,7 +78,7 @@ def __init__(self, cfg: DictConfig) -> None:
self._device = utils.get_device(device=cfg.device)
self._dtype = training.get_dtype(dtype=cfg.dtype, device=self._device)
self._logger = utils.get_logger(cfg.log_level)
training.set_seed(seed=cfg.seed)
training.set_seed(seed=cfg.seed, debug_mode=cfg.get("deterministic_mode", None))

def setup(self, cfg: DictConfig) -> None:
"""Setup the model and transforms."""
Expand Down
2 changes: 1 addition & 1 deletion recipes/dev/generate_v2_distributed.py
Original file line number Diff line number Diff line change
Expand Up @@ -87,7 +87,7 @@ def __init__(self, cfg: DictConfig) -> None:
dist.init_process_group(backend="nccl")
_, rank = utils.get_world_size_and_rank()
self._is_rank_zero = rank == 0
training.set_seed(seed=cfg.seed)
training.set_seed(seed=cfg.seed, debug_mode=cfg.get("deterministic_mode", None))

def setup(self, cfg: DictConfig) -> None:
"""Setup the model and transforms."""
Expand Down
2 changes: 1 addition & 1 deletion recipes/eleuther_eval.py
Original file line number Diff line number Diff line change
Expand Up @@ -451,7 +451,7 @@ def __init__(self, cfg: DictConfig) -> None:
self.device = utils.get_device(device=cfg.device)
self.dtype = training.get_dtype(dtype=cfg.dtype, device=self.device)
self.logger = utils.get_logger(cfg.get("log_level", "info"))
training.set_seed(seed=cfg.seed)
training.set_seed(seed=cfg.seed, debug_mode=cfg.get("deterministic_mode", None))

# Eval specific variables
self.limit = cfg.limit
Expand Down
4 changes: 3 additions & 1 deletion recipes/full_dpo_distributed.py
Original file line number Diff line number Diff line change
Expand Up @@ -180,7 +180,9 @@ def __init__(self, cfg: DictConfig) -> None:

# These attributes constitute the recipe state and are updated by ``load_checkpoint``
# when ``resume_from_checkpoint`` is ``True``
self.seed = training.set_seed(seed=cfg.seed)
self.seed = training.set_seed(
seed=cfg.seed, debug_mode=cfg.get("deterministic_mode", None)
)
self.epochs_run = 0
self.total_epochs = cfg.epochs
self.max_steps_per_epoch = cfg.max_steps_per_epoch
Expand Down
4 changes: 3 additions & 1 deletion recipes/full_finetune_distributed.py
Original file line number Diff line number Diff line change
Expand Up @@ -198,7 +198,9 @@ def __init__(self, cfg: DictConfig) -> None:

# These are public properties which are updated by the checkpoint loader
# when ``resume_from_checkpoint`` is `True` or validated in tests
self.seed = training.set_seed(seed=cfg.seed)
self.seed = training.set_seed(
seed=cfg.seed, debug_mode=cfg.get("deterministic_mode", None)
)
self.epochs_run = 0
self.total_epochs = cfg.epochs
self.max_steps_per_epoch = cfg.max_steps_per_epoch
Expand Down
4 changes: 3 additions & 1 deletion recipes/full_finetune_single_device.py
Original file line number Diff line number Diff line change
Expand Up @@ -184,7 +184,9 @@ def __init__(self, cfg: DictConfig) -> None:

# These are public properties which are updated by the checkpoint loader
# when ``resume_from_checkpoint`` is `True` or validated in tests
self.seed = training.set_seed(seed=cfg.seed)
self.seed = training.set_seed(
seed=cfg.seed, debug_mode=cfg.get("deterministic_mode", None)
)
self.epochs_run = 0
self.total_epochs = cfg.epochs
self.max_steps_per_epoch = cfg.max_steps_per_epoch
Expand Down
2 changes: 1 addition & 1 deletion recipes/generate.py
Original file line number Diff line number Diff line change
Expand Up @@ -40,7 +40,7 @@ def __init__(self, cfg: DictConfig) -> None:
self._quantizer = config.instantiate(cfg.quantizer)
self._quantization_mode = training.get_quantizer_mode(self._quantizer)

training.set_seed(seed=cfg.seed)
training.set_seed(seed=cfg.seed, debug_mode=cfg.get("deterministic_mode", None))

def setup(self, cfg: DictConfig) -> None:
checkpointer = config.instantiate(cfg.checkpointer)
Expand Down
4 changes: 3 additions & 1 deletion recipes/knowledge_distillation_distributed.py
Original file line number Diff line number Diff line change
Expand Up @@ -130,7 +130,9 @@ def __init__(self, cfg: DictConfig) -> None:

# These are public properties which are updated by the checkpoint loader
# when ``resume_from_checkpoint`` is `True` or validated in tests
self.seed = training.set_seed(seed=cfg.seed)
self.seed = training.set_seed(
seed=cfg.seed, debug_mode=cfg.get("deterministic_mode", None)
)
self.epochs_run = 0
self.total_epochs = cfg.epochs
self.max_steps_per_epoch = cfg.max_steps_per_epoch
Expand Down
4 changes: 3 additions & 1 deletion recipes/knowledge_distillation_single_device.py
Original file line number Diff line number Diff line change
Expand Up @@ -128,7 +128,9 @@ def __init__(self, cfg: DictConfig) -> None:

# These are public properties which are updated by the checkpoint loader
# when ``resume_from_checkpoint`` is `True` or validated in tests
self.seed = training.set_seed(seed=cfg.seed)
self.seed = training.set_seed(
seed=cfg.seed, debug_mode=cfg.get("deterministic_mode", None)
)
self.epochs_run = 0
self.total_epochs = cfg.epochs
self.max_steps_per_epoch = cfg.max_steps_per_epoch
Expand Down
4 changes: 3 additions & 1 deletion recipes/lora_dpo_distributed.py
Original file line number Diff line number Diff line change
Expand Up @@ -172,7 +172,9 @@ def __init__(self, cfg: DictConfig) -> None:

# These attributes constitute the recipe state and are updated by ``load_checkpoint``
# when ``resume_from_checkpoint`` is ``True``
self.seed = training.set_seed(seed=cfg.seed)
self.seed = training.set_seed(
seed=cfg.seed, debug_mode=cfg.get("deterministic_mode", None)
)
self.epochs_run = 0
self.total_epochs = cfg.epochs
self.max_steps_per_epoch = cfg.max_steps_per_epoch
Expand Down
4 changes: 3 additions & 1 deletion recipes/lora_dpo_single_device.py
Original file line number Diff line number Diff line change
Expand Up @@ -129,7 +129,9 @@ def __init__(self, cfg: DictConfig) -> None:

# These are public properties which are updated by the checkpoint loader
# when ``resume_from_checkpoint`` is `True` or validated in tests
self.seed = training.set_seed(seed=cfg.seed)
self.seed = training.set_seed(
seed=cfg.seed, debug_mode=cfg.get("deterministic_mode", None)
)
self.epochs_run = 0
self.total_epochs = cfg.epochs
self.max_steps_per_epoch = cfg.max_steps_per_epoch
Expand Down
4 changes: 3 additions & 1 deletion recipes/lora_finetune_distributed.py
Original file line number Diff line number Diff line change
Expand Up @@ -152,7 +152,9 @@ def __init__(self, cfg: DictConfig) -> None:

# These attributes constitute the recipe state and are updated by ``load_checkpoint``
# when ``resume_from_checkpoint`` is ``True``
self.seed = training.set_seed(seed=cfg.seed)
self.seed = training.set_seed(
seed=cfg.seed, debug_mode=cfg.get("deterministic_mode", None)
)
self.epochs_run = 0
self.total_epochs = cfg.epochs
self.max_steps_per_epoch = cfg.max_steps_per_epoch
Expand Down
4 changes: 3 additions & 1 deletion recipes/lora_finetune_distributed_multi_dataset.py
Original file line number Diff line number Diff line change
Expand Up @@ -155,7 +155,9 @@ def __init__(self, cfg: DictConfig) -> None:

# These attributes constitute the recipe state and are updated by ``load_checkpoint``
# when ``resume_from_checkpoint`` is ``True``
self.seed = training.set_seed(seed=cfg.seed)
self.seed = training.set_seed(
seed=cfg.seed, debug_mode=cfg.get("deterministic_mode", None)
)
self.epochs_run = 0
self.total_epochs = cfg.epochs
self.max_steps_per_epoch = cfg.max_steps_per_epoch
Expand Down
4 changes: 3 additions & 1 deletion recipes/lora_finetune_single_device.py
Original file line number Diff line number Diff line change
Expand Up @@ -144,7 +144,9 @@ def __init__(self, cfg: DictConfig) -> None:

# These are public properties which are updated by the checkpoint loader
# when ``resume_from_checkpoint`` is `True` or validated in tests
self.seed = training.set_seed(seed=cfg.seed)
self.seed = training.set_seed(
seed=cfg.seed, debug_mode=cfg.get("deterministic_mode", None)
)
self.epochs_run = 0
self.total_epochs = cfg.epochs
self.max_steps_per_epoch = cfg.max_steps_per_epoch
Expand Down
4 changes: 3 additions & 1 deletion recipes/ppo_full_finetune_single_device.py
Original file line number Diff line number Diff line change
Expand Up @@ -133,7 +133,9 @@ def __init__(self, cfg: DictConfig) -> None:

# These are public properties which are updated by the checkpoint loader
# when ``resume_from_checkpoint`` is `True` or validated in tests
self.seed = training.set_seed(seed=cfg.seed)
self.seed = training.set_seed(
seed=cfg.seed, debug_mode=cfg.get("deterministic_mode", None)
)
# manually setting up a generator for the recipe
self._rng = torch.Generator(self._device).manual_seed(self.seed)
self._total_steps = 0
Expand Down
4 changes: 3 additions & 1 deletion recipes/qat_distributed.py
Original file line number Diff line number Diff line change
Expand Up @@ -202,7 +202,9 @@ def __init__(self, cfg: DictConfig) -> None:

# These are public properties which are updated by the checkpoint loader
# when ``resume_from_checkpoint`` is `True` or validated in tests
self.seed = training.set_seed(seed=cfg.seed)
self.seed = training.set_seed(
seed=cfg.seed, debug_mode=cfg.get("deterministic_mode", None)
)
self.epochs_run = 0
self.total_epochs = cfg.epochs
self.max_steps_per_epoch = cfg.max_steps_per_epoch
Expand Down
4 changes: 3 additions & 1 deletion recipes/qat_lora_finetune_distributed.py
Original file line number Diff line number Diff line change
Expand Up @@ -174,7 +174,9 @@ def __init__(self, cfg: DictConfig) -> None:

# These attributes constitute the recipe state and are updated by ``load_checkpoint``
# when ``resume_from_checkpoint`` is ``True``
self.seed = training.set_seed(seed=cfg.seed)
self.seed = training.set_seed(
seed=cfg.seed, debug_mode=cfg.get("deterministic_mode", None)
)
self.epochs_run = 0
self.total_epochs = cfg.epochs
self.max_steps_per_epoch = cfg.max_steps_per_epoch
Expand Down
2 changes: 1 addition & 1 deletion recipes/quantize.py
Original file line number Diff line number Diff line change
Expand Up @@ -50,7 +50,7 @@ def __init__(self, cfg: DictConfig) -> None:
self._dtype = training.get_dtype(dtype=cfg.dtype, device=self._device)
self._quantizer = config.instantiate(cfg.quantizer)
self._quantization_mode = training.get_quantizer_mode(self._quantizer)
training.set_seed(seed=cfg.seed)
training.set_seed(seed=cfg.seed, debug_mode=cfg.get("deterministic_mode", None))

def load_checkpoint(self, checkpointer_cfg: DictConfig) -> Dict[str, Any]:
self._checkpointer = config.instantiate(checkpointer_cfg)
Expand Down