Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Implements MLFlowLogger #2365

Merged
merged 8 commits into from
Feb 12, 2025
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions docs/source/api_ref_training.rst
Original file line number Diff line number Diff line change
Expand Up @@ -102,6 +102,7 @@ Various logging utilities.
metric_logging.TensorBoardLogger
metric_logging.StdoutLogger
metric_logging.DiskLogger
metric_logging.MLFlowLogger

.. _perf_profiling_label:

Expand Down
1 change: 1 addition & 0 deletions pyproject.toml
Original file line number Diff line number Diff line change
Expand Up @@ -48,6 +48,7 @@ tune = "torchtune._cli.tune:main"
dev = [
"bitsandbytes>=0.43.0",
"comet_ml>=3.44.2",
"mlflow",
"pre-commit",
"pytest==7.4.0",
"pytest-cov",
Expand Down
59 changes: 59 additions & 0 deletions tests/torchtune/training/test_metric_logging.py
Original file line number Diff line number Diff line change
Expand Up @@ -10,6 +10,9 @@
from typing import cast
from unittest.mock import patch

import mlflow

import mlflow.artifacts
import pytest
from omegaconf import OmegaConf
from tensorboard.backend.event_processing.event_accumulator import EventAccumulator
Expand All @@ -19,6 +22,7 @@
from torchtune.training.metric_logging import (
CometLogger,
DiskLogger,
MLFlowLogger,
StdoutLogger,
TensorBoardLogger,
WandBLogger,
Expand Down Expand Up @@ -199,3 +203,58 @@ def test_log_config(self) -> None:
cfg = OmegaConf.create({"a": 1, "b": 2})
logger.log_config(cfg)
mock_experiment.return_value.log_parameters.assert_called_with(cfg)


@pytest.fixture(scope="class")
def mlflow_context_fixture():
original_uri = mlflow.get_tracking_uri()

with tempfile.TemporaryDirectory() as tmpdir:
mlflow.set_tracking_uri(f"file:{tmpdir}")
yield

# Restore the original URI
mlflow.set_tracking_uri(original_uri)


@pytest.mark.usefixtures("mlflow_context_fixture")
class TestMLFlowLogger:
def test_log(self):
logger = MLFlowLogger(experiment_name="my_experiment", run_name="run1")
run_id = logger._run_id
logger.log("test_metric", 1.0, step=1)
logger.close()

run = mlflow.get_run(run_id)
assert run.data.metrics == {"test_metric": 1}

def test_log_dict(self):
logger = MLFlowLogger(experiment_name="my_experiment", run_name="run2")
run_id = logger._run_id
metric_dict = {f"log_dict_{i}": float(i) ** 2 for i in range(5)}
logger.log_dict(metric_dict, step=2)
logger.close()

run = mlflow.get_run(run_id)
assert run.data.metrics == metric_dict

def test_log_config(self) -> None:
with tempfile.TemporaryDirectory() as output_dir:
cfg = OmegaConf.create(
{"foo": {"bar": "baz"}, "qux": "quux", "output_dir": output_dir}
)
logger = MLFlowLogger(experiment_name="my_experiment", run_name="run2")
run_id = logger._run_id

logger.log_config(cfg)

expected = {"foo.bar": "baz", "qux": "quux", "output_dir": output_dir}

run = mlflow.get_run(run_id)
assert run.data.params == expected

artifacts = mlflow.artifacts.list_artifacts(
run_id=run_id, artifact_path=output_dir.lstrip("/")
)
assert len(artifacts) == 1
assert artifacts[0].path.endswith("torchtune_config.yaml")
139 changes: 139 additions & 0 deletions torchtune/training/metric_logging.py
Original file line number Diff line number Diff line change
Expand Up @@ -48,6 +48,34 @@ def save_config(config: DictConfig) -> Path:
log.warning(f"Error saving config.\nError: \n{e}.")


def flatten_dict(d: Dict[str, Any], *, sep: str = ".", parent_key: str = ""):
"""Recursively flattens a nested dictionary into one level of key-value pairs.
Args:
d (Dict[str, Any]): Any dictionary to flatten.
sep (str, optional): Desired separator for flattening nested keys. Defaults to ".".
parent_key (str, optional): Key prefix for children (nested keys), containing parent key names. Defaults to "".
Example:
>>> flatten_dict({"foo": {"bar": "baz"}, "qux": "quux"}, sep="--")
{"foo--bar": "baz", "qux": "quux"}
Returns:
Dict[str, Any]: Flattened dictionary.
Note:
Does not unnest dictionaries within list values (i.e., {"foo": [{"bar": "baz"}]}).
"""
items = []
for k, v in d.items():
new_key = f"{parent_key}{sep}{k}" if parent_key else k
if isinstance(v, dict):
items.extend(flatten_dict(v, sep=sep, parent_key=new_key).items())
else:
items.append((new_key, v))
return dict(items)


class MetricLoggerInterface(Protocol):
"""Abstract metric logger."""

Expand Down Expand Up @@ -469,3 +497,114 @@ def close(self) -> None:

def __del__(self) -> None:
self.close()


class MLFlowLogger(MetricLoggerInterface):
"""Logger for use w/ MLFlow (https://mlflow.org/).
Args:
experiment_name (Optional[str]): MLFlow experiment name. If not specified, will
default to MLFLOW_EXPERIMENT_NAME environment variable if set, or default.
tracking_uri (Optional[str]): MLFlow tracking uri. If not specified, will default
to MLFLOW_TRACKING_URI environment variable if set, or default.
run_id (Optional[str]): MLFlow run name. If not specified, will default
to mlflow-generated HRID. Unused if run_id is specified or MLFLOW_RUN_ID
environment variable is found.
run_name (Optional[str]): MLFlow run ID. If not specified, will default
to MLFLOW_RUN_ID environment variable if set, or a new run will be created.
Example:
>>> logger = MLFlowLogger(experiment_name="my_experiment", run_name="run1")
>>> logger.log("accuracy", 0.95, step=1)
>>> logger.log_dict({"loss": 0.1, "accuracy": 0.95}, step=1)
>>> logger.log_config(config)
>>> logger.close()
Raises:
ImportError: If ``mlflow`` package is not installed.
Note:
This logger requires the mlflow package to be installed.
You can install it with `pip install mlflow`.
"""

def __init__(
self,
experiment_name: Optional[str] = None,
tracking_uri: Optional[str] = None,
run_id: Optional[str] = None,
run_name: Optional[str] = None,
):
try:
import mlflow
except ImportError as e:
raise ImportError(
"``mlflow`` package not found. Please install mlflow using `pip install mlflow` to use MLFlowLogger."
"Alternatively, use the ``StdoutLogger``, which can be specified by setting metric_logger_type='stdout'."
) from e

_, self.rank = get_world_size_and_rank()

self._mlflow = mlflow

self._tracking_uri = tracking_uri or os.getenv("MLFLOW_TRACKING_URI")
self._experiment_name = experiment_name or os.getenv("MLFLOW_EXPERIMENT_NAME")
self._run_id = run_id or os.getenv("MLFLOW_RUN_ID")

if self.rank == 0:
if not self._mlflow.is_tracking_uri_set():
if self._tracking_uri is not None:
self._mlflow.set_tracking_uri(self._tracking_uri)

if self._mlflow.active_run() is None or self._nested_run or self._run_id:
if self._experiment_name is not None:
# Use of set_experiment() ensure that Experiment is created if not exists
self._mlflow.set_experiment(self._experiment_name)
run = self._mlflow.start_run(run_name=run_name)
self._run_id = run.info.run_id

def log_config(self, config: DictConfig) -> None:
"""Saves the config locally and also logs the config to mlflow. The config is
stored in the same directory as the checkpoint.
Args:
config (DictConfig): config to log
"""
if self._mlflow.active_run():
resolved = OmegaConf.to_container(config, resolve=True)

# mlflow's params must be flat key-value pairs
config_as_params = flatten_dict(resolved)
self._mlflow.log_params(config_as_params, run_id=self._run_id)

output_config_fname = save_config(config)

# this avoids break if config's output_dir is an absolute path
artifact_path = str(output_config_fname.parent).lstrip("/")

self._mlflow.log_artifact(
output_config_fname,
artifact_path=artifact_path,
run_id=self._run_id,
)

def log(self, name: str, data: Scalar, step: int) -> None:
if self._mlflow.active_run():
self._mlflow.log_metric(name, data, step=step, run_id=self._run_id)

def log_dict(self, payload: Mapping[str, Scalar], step: int) -> None:
if self._mlflow.active_run():
self._mlflow.log_metrics(payload, step=step, run_id=self._run_id)

def close(self) -> None:
"""
Ends the MLflow run.
After calling close, no further logging should be performed.
"""
if self.rank == 0 and self._mlflow.active_run():
self._mlflow.end_run()

def __del__(self) -> None:
# Ensure the MLflow run is closed when the logger is deleted.
if hasattr(self, "_mlflow") and self._mlflow.active_run():
self._mlflow.end_run()