Skip to content

Commit

Permalink
Simplify implementation of tile
Browse files Browse the repository at this point in the history
Deprecate obscure ndim kwarg
  • Loading branch information
ricardoV94 committed Feb 4, 2025
1 parent 884dee9 commit b64ef79
Show file tree
Hide file tree
Showing 2 changed files with 204 additions and 234 deletions.
181 changes: 113 additions & 68 deletions pytensor/tensor/basic.py
Original file line number Diff line number Diff line change
Expand Up @@ -10,7 +10,7 @@
from collections.abc import Sequence
from functools import partial
from numbers import Number
from typing import TYPE_CHECKING
from typing import TYPE_CHECKING, Union
from typing import cast as type_cast

import numpy as np
Expand All @@ -33,7 +33,7 @@
from pytensor.link.c.op import COp
from pytensor.link.c.params_type import ParamsType
from pytensor.printing import Printer, min_informative_str, pprint, set_precedence
from pytensor.raise_op import CheckAndRaise, assert_op
from pytensor.raise_op import CheckAndRaise
from pytensor.scalar import int32
from pytensor.scalar.basic import ScalarConstant, ScalarType, ScalarVariable
from pytensor.tensor import (
Expand Down Expand Up @@ -3084,87 +3084,132 @@ def flatten(x, ndim=1):
return x_reshaped


def tile(x, reps, ndim=None):
def tile(
A: "TensorLike", reps: Union[Sequence[Union[int, "TensorLike"]], "TensorLike"]
) -> TensorVariable:
"""
Tile input array `x` according to `reps`.
Tile input tensor `A` according to `reps`.
See the docstring of `numpy.tile` for details.
'reps' can be constant integer (e.g. 3), constant vector(e.g. [2 3]),
symbolic scalar (e.g. tensor.iscalar()), symbolic vector (e.g. tensor.ivector())
or a list of symbolic scalar (e.g. [tensor.iscalar(), tensor.iscalar()]).
If `reps` is a PyTensor vector, its length must be statically known.
You can use `specify_shape` to set the length.
Examples
--------
.. testcode::
import pytensor.tensor as pt
A = pt.matrix("A", dtype=int)
A_tiled = pt.tile(A, 2)
print(A_tiled.eval({A: [[1, 2], [3, 4]]}))
.. testoutput::
[[1 2 1 2]
[3 4 3 4]]
Reps can be a sequence of constants and/ or symbolic integer variables
.. testcode::
rep0 = pt.scalar("rep0", dtype=int)
A_tiled = pt.tile(A, (rep0, 1))
print(A_tiled.eval({A: [[1, 2], [3, 4]], rep0: 2}))
.. testoutput::
[[1 2]
[3 4]
[1 2]
[3 4]]
Reps can be a single integer vector, in which case its length must be statically known.
Either of the following is a valid way to specify the length:
.. testcode::
reps = pt.vector("reps", dtype=int, shape=(2,))
A_tiled = pt.tile(A, reps)
print(A_tiled.eval({A: [[1, 2], [3, 4]], reps: [1, 2]}))
.. testoutput::
[[1 2 1 2]
[3 4 3 4]]
.. testcode::
ndim is the number of the dimensions of the output, if it is provided, ndim
should be equal or larger than x.ndim and len(reps), otherwise, we will use
max(x.ndim, len(reps)) as ndim. If reps is symbolic vector, the ndim has to
be provided.
reps = pt.vector("reps", dtype=int)
reps = pt.specify_shape(reps, (2,))
A_tiled = pt.tile(A, reps)
print(A_tiled.eval({A: [[1, 2], [3, 4]], reps: [2, 2]}))
.. testoutput::
[[1 2 1 2]
[3 4 3 4]
[1 2 1 2]
[3 4 3 4]]
"""
from pytensor.tensor.math import ge

_x = as_tensor_variable(x)
if ndim is not None and ndim < _x.ndim:
raise ValueError("ndim should be equal or larger than _x.ndim")
A = as_tensor_variable(A)

# If reps is a scalar, integer or vector, we convert it to a list.
# Convert symbolic reps to a tuple
if not isinstance(reps, list | tuple):
reps_astensor = as_tensor_variable(reps)
ndim_check = reps_astensor.ndim
if reps_astensor.dtype not in discrete_dtypes:
raise ValueError("elements of reps must be integer dtype")

# The scalar/integer case
if ndim_check == 0:
reps = [reps]

# The vector case
elif ndim_check == 1:
if ndim is None:
reps = as_tensor_variable(reps)
if reps.type.ndim == 0:
reps = (reps,)
elif reps.type.ndim == 1:
try:
reps = tuple(reps)
except ValueError:
raise ValueError(
"if reps is tensor.vector, you should specify the ndim"
"Length of repetitions tensor cannot be determined. Use specify_shape to set the length."
)
else:
offset = ndim - reps.shape[0]

# assert that reps.shape[0] does not exceed ndim
offset = assert_op(offset, ge(offset, 0))
else:
raise ValueError(
f"Repetitions tensor must be a scalar or a vector, got ndim={reps.type.ndim}"
)

# if reps.ndim is less than _x.ndim, we pad the reps with
# "1" so that reps will have the same ndim as _x.
reps_ = [switch(i < offset, 1, reps[i - offset]) for i in range(ndim)]
reps = reps_
reps = [as_tensor_variable(rep) for rep in reps]
if not all(
rep.type.ndim == 0 and rep.type.dtype in discrete_dtypes for rep in reps
):
raise ValueError(
f"All reps entries shoud be scalar integers, got {reps} of type {[rep.type for rep in reps]}"
)

# For others, raise an error
else:
raise ValueError("the dimension of reps should not exceed 1")
else:
if ndim is not None and len(reps) > ndim:
raise ValueError("len(reps) should be equal or less than ndim")
if not all(
isinstance(r, int)
or (isinstance(r, TensorVariable) and r.dtype in discrete_dtypes)
for r in reps
):
raise ValueError("elements of reps must be scalars of integer dtype")
len_reps = len(reps)
out_ndim = builtins.max(len_reps, A.type.ndim)

# Pad reps on the left (if needed)
if len_reps < out_ndim:
reps = (*((1,) * (out_ndim - len_reps)), *reps)

# Pad A's shape on the left (if needed)
elif A.type.ndim < out_ndim:
A = shape_padleft(A, out_ndim - A.type.ndim)

# Expand every other dim of A and expand n-reps via Alloc
# A_replicated = alloc(A[None, :, ..., None, :], reps[0], A.shape[0], ..., reps[-1], A.shape[-1])
A_shape = A.shape
interleaved_reps_shape = [
d for pair in zip(reps, A_shape, strict=True) for d in pair
]
every_other_axis = tuple(range(0, out_ndim * 2, 2))
A_replicated = alloc(
expand_dims(A, every_other_axis),
*interleaved_reps_shape,
)

# If reps.ndim is less than _x.ndim, we pad the reps with
# "1" so that reps will have the same ndim as _x
reps = list(reps)
if ndim is None:
ndim = builtins.max(len(reps), _x.ndim)
if len(reps) < ndim:
reps = [1] * (ndim - len(reps)) + reps

_shape = [1] * (ndim - _x.ndim) + [_x.shape[i] for i in range(_x.ndim)]
alloc_shape = reps + _shape
y = alloc(_x, *alloc_shape)
shuffle_ind = np.arange(ndim * 2).reshape(2, ndim)
shuffle_ind = shuffle_ind.transpose().flatten()
y = y.dimshuffle(*shuffle_ind)
new_shapes = [sh * reps[i] for i, sh in enumerate(_shape)]
y = y.reshape(new_shapes)

return y
# Combine replicate and original dimensions via reshape
# A_tiled = A_replicated.reshape(reps[0] * A.shape[0], ..., reps[-1] * A.shape[-1])
tiled_shape = tuple(rep * A_dim for rep, A_dim in zip(reps, A_shape, strict=True))
return A_replicated.reshape(tiled_shape)


class ARange(Op):
Expand Down
Loading

0 comments on commit b64ef79

Please sign in to comment.