Skip to content

Commit

Permalink
More fixes
Browse files Browse the repository at this point in the history
  • Loading branch information
jessica-writes-code committed Apr 15, 2023
1 parent 1a83b76 commit e2307d1
Showing 1 changed file with 17 additions and 17 deletions.
34 changes: 17 additions & 17 deletions pymc/distributions/discrete.py
Original file line number Diff line number Diff line change
Expand Up @@ -256,9 +256,9 @@ def dist(
*args,
**kwargs,
):
alpha = at.as_tensor_variable(floatX(alpha))
beta = at.as_tensor_variable(floatX(beta))
n = at.as_tensor_variable(intX(n))
alpha = pt.as_tensor_variable(floatX(alpha))
beta = pt.as_tensor_variable(floatX(beta))
n = pt.as_tensor_variable(intX(n))
return super().dist([n, alpha, beta], **kwargs)

def moment(rv, size, n, alpha, beta):
Expand Down Expand Up @@ -484,8 +484,8 @@ def DiscreteWeibull(q, b, x):

@classmethod
def dist(cls, q: DIST_PARAMETER_TYPES, beta: DIST_PARAMETER_TYPES, *args, **kwargs):
q = at.as_tensor_variable(floatX(q))
beta = at.as_tensor_variable(floatX(beta))
q = pt.as_tensor_variable(floatX(q))
beta = pt.as_tensor_variable(floatX(beta))
return super().dist([q, beta], **kwargs)

def moment(rv, size, q, beta):
Expand Down Expand Up @@ -573,7 +573,7 @@ class Poisson(Discrete):

@classmethod
def dist(cls, mu: DIST_PARAMETER_TYPES, *args, **kwargs):
mu = at.as_tensor_variable(floatX(mu))
mu = pt.as_tensor_variable(floatX(mu))
return super().dist([mu], *args, **kwargs)

def moment(rv, size, mu):
Expand Down Expand Up @@ -816,7 +816,7 @@ class Geometric(Discrete):

@classmethod
def dist(cls, p: DIST_PARAMETER_TYPES, *args, **kwargs):
p = at.as_tensor_variable(floatX(p))
p = pt.as_tensor_variable(floatX(p))
return super().dist([p], *args, **kwargs)

def moment(rv, size, p):
Expand Down Expand Up @@ -920,9 +920,9 @@ def dist(
*args,
**kwargs,
):
good = at.as_tensor_variable(intX(k))
bad = at.as_tensor_variable(intX(N - k))
n = at.as_tensor_variable(intX(n))
good = pt.as_tensor_variable(intX(k))
bad = pt.as_tensor_variable(intX(N - k))
n = pt.as_tensor_variable(intX(n))
return super().dist([good, bad, n], *args, **kwargs)

def moment(rv, size, good, bad, n):
Expand Down Expand Up @@ -1057,8 +1057,8 @@ class DiscreteUniform(Discrete):

@classmethod
def dist(cls, lower: DIST_PARAMETER_TYPES, upper: DIST_PARAMETER_TYPES, *args, **kwargs):
lower = intX(at.floor(lower))
upper = intX(at.floor(upper))
lower = intX(pt.floor(lower))
upper = intX(pt.floor(upper))
return super().dist([lower, upper], **kwargs)

def moment(rv, size, lower, upper):
Expand Down Expand Up @@ -1254,7 +1254,7 @@ class DiracDelta(Discrete):

@classmethod
def dist(cls, c: DIST_PARAMETER_TYPES, *args, **kwargs):
c = at.as_tensor_variable(c)
c = pt.as_tensor_variable(c)
if c.dtype in continuous_types:
c = floatX(c)
return super().dist([c], **kwargs)
Expand Down Expand Up @@ -1561,8 +1561,8 @@ class _OrderedLogistic(Categorical):

@classmethod
def dist(cls, eta: DIST_PARAMETER_TYPES, cutpoints: DIST_PARAMETER_TYPES, *args, **kwargs):
eta = at.as_tensor_variable(floatX(eta))
cutpoints = at.as_tensor_variable(cutpoints)
eta = pt.as_tensor_variable(floatX(eta))
cutpoints = pt.as_tensor_variable(cutpoints)

pa = sigmoid(cutpoints - pt.shape_padright(eta))
p_cum = pt.concatenate(
Expand Down Expand Up @@ -1674,8 +1674,8 @@ def dist(
*args,
**kwargs,
):
eta = at.as_tensor_variable(floatX(eta))
cutpoints = at.as_tensor_variable(cutpoints)
eta = pt.as_tensor_variable(floatX(eta))
cutpoints = pt.as_tensor_variable(cutpoints)

probits = pt.shape_padright(eta) - cutpoints
_log_p = pt.concatenate(
Expand Down

0 comments on commit e2307d1

Please sign in to comment.