-
Notifications
You must be signed in to change notification settings - Fork 44
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
5 changed files
with
563 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,68 @@ | ||
library(testthat) | ||
library(bigsnpr) | ||
|
||
bedfile <- file.path(tempdir(), "tmp-data/public-data3.bed") | ||
if (!file.exists(rdsfile <- sub_bed(bedfile, ".rds"))) { | ||
zip <- tempfile(fileext = ".zip") | ||
download.file( | ||
"https://github.com/privefl/bigsnpr/blob/master/data-raw/public-data3.zip?raw=true", | ||
destfile = zip, mode = "wb") | ||
unzip(zip, exdir = tempdir()) | ||
rds <- snp_readBed(bedfile) | ||
expect_identical(normalizePath(rds), normalizePath(rdsfile)) | ||
} | ||
|
||
obj.bigSNP <- snp_attach(rdsfile) | ||
G <- obj.bigSNP$genotypes | ||
y <- obj.bigSNP$fam$affection | ||
POS2 <- obj.bigSNP$map$genetic.dist + 1000 * obj.bigSNP$map$chromosome | ||
|
||
sumstats <- bigreadr::fread2(file.path(tempdir(), "tmp-data/public-data3-sumstats.txt")) | ||
sumstats$n_eff <- sumstats$N | ||
map <- setNames(obj.bigSNP$map[-3], c("chr", "rsid", "pos", "a1", "a0")) | ||
df_beta <- snp_match(sumstats, map, join_by_pos = FALSE) | ||
|
||
ind_var <- df_beta$`_NUM_ID_` | ||
corr0 <- snp_cor_extendedThr( | ||
G, ind.col = ind_var, thr_r2 = 0.2, | ||
infos.pos = POS2[ind_var], size = 1 / 1000, ncores = 2) | ||
corr <- as_SFBM(corr0) | ||
|
||
maf <- snp_MAF(G, ind.col = ind_var) | ||
sd0 <- sqrt(2 * maf * (1 - maf)) | ||
|
||
expect_equal( | ||
snp_qcimp_sumstats(corr, df_beta, sd0 = sd0, max_run = 2), | ||
snp_qcimp_sumstats(corr, df_beta, sd0 = sd0, max_run = 2) | ||
) | ||
# | ||
# expect_equal( | ||
# snp_qcimp_sumstats(corr, df_beta, sd0 = sd0, max_run = 1), | ||
# snp_qcimp_sumstats(corr, df_beta, sd0 = sd0, max_run = 1, ncores = 2) | ||
# ) | ||
# 1 iter is fine | ||
# 2 iter is fine with ncores = 1 | ||
# any is fine with ncores = 1 | ||
# the problem comes from ncores = 2 and max_run > 1 | ||
|
||
# test0 <- replicate(10, snp_qcimp_sumstats(corr, df_beta, sd0 = sd0, max_run = 2)) | ||
# #18378 / 10129 / 19061 is TRUE | ||
|
||
expect_equal( | ||
test1 <- snp_qcimp_sumstats(corr, df_beta, sd0 = sd0, max_run = 2, ncores = 3), | ||
test2 <- snp_qcimp_sumstats(corr, df_beta, sd0 = sd0, max_run = 2, ncores = 3) | ||
) | ||
|
||
# only r2_max is the same | ||
# thr are all 0.2 / keep are all TRUE | ||
|
||
expect_equal( | ||
test3 <- snp_qcimp_sumstats(corr, df_beta, sd0 = sd0, ncores = 3), | ||
test4 <- snp_qcimp_sumstats(corr, df_beta, sd0 = sd0, ncores = 3) | ||
) | ||
|
||
plot(lengths(test1$ind_imp), lengths(test2$ind_imp)) | ||
|
||
res <- snp_qcimp_sumstats(corr, df_beta, sd0 = sd0, ncores = 2) | ||
expect_false(any(res$rm_qc, na.rm = TRUE)) | ||
expect_equal(snp_qcimp_sumstats(corr, df_beta, sd0 = sd0, ncores = 2), res) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,21 @@ | ||
library(bigsnpr) | ||
obj <- snp_attachExtdata() | ||
G <- obj$genotypes | ||
set.seed(1) | ||
y <- rnorm(nrow(G)) | ||
w <- runif(5); w <- w / sum(w) | ||
G_w <- G[, 1:5] %*% w | ||
|
||
sapply(1:5, function(j) { | ||
summary(lm(y ~ G[, j]))$coef[2, 1:3] | ||
}) | ||
|
||
gwas <- big_univLinReg(G, y, ind.col = 1:5) | ||
gwas$score | ||
|
||
(Z_w <- crossprod(gwas$score, w)) | ||
summary(mylm <- lm(y ~ G_w))$coef # 0.570 instead of 0.266 | ||
# crossprod(scale(G_w), scale(y)) / (sd(mylm$residuals) * sqrt(nrow(G))) | ||
|
||
var <- big_colstats(G, ind.col = 1:5)$var | ||
(beta_w <- crossprod(gwas$estim * var, w) / var(G_w)) # both 0.0739 |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,137 @@ | ||
library(bigsnpr) | ||
|
||
celiac <- snp_attach("../Dubois2010_data/FinnuncorrNLITUK1UK3hap300_QC_norel.rds") | ||
dim(G <- celiac$genotypes) # 15155 x 281122 | ||
CHR <- celiac$map$chromosome | ||
POS <- celiac$map$physical.pos | ||
y <- celiac$fam$affection - 1 | ||
NCORES <- nb_cores() | ||
|
||
pop <- snp_getSampleInfos(celiac, "../Dubois2010_data/FinnNLITUK1UK3.clusterv2")[[1]] | ||
pop2 <- c("Netherlands", "Italy", "UK1", "UK2", "Finland")[pop] | ||
table(pop2, exclude = NULL) | ||
# Finland Italy Netherlands UK1 UK2 | ||
# 2436 1035 1623 3325 6736 | ||
|
||
big_counts(G, ind.col = 1:10) | ||
G2 <- snp_fastImputeSimple(G, method = "mean2", ncores = NCORES) | ||
|
||
obj.svd <- snp_autoSVD(G2, CHR, POS, ncores = NCORES) | ||
plot(obj.svd) | ||
plot(obj.svd, type = "scores", scores = 1:6, coef = 0.6) | ||
PC <- predict(obj.svd)[, 1:6] | ||
|
||
pop_centers <- bigutilsr::geometric_median(PC, by_grp = pop2) | ||
|
||
ldist_to_centers <- apply(pop_centers, 1, function(center) { | ||
log(rowSums(sweep(PC, 2, center, '-')^2)) | ||
}) | ||
hist(ldist_to_centers[pop2 != "Finland", "Finland"]) | ||
hist(ldist_to_centers[pop2 == "Italy", "Italy"]) | ||
hist(ldist_to_centers[pop2 != "Italy", "Italy"]) | ||
hist(ldist_to_centers[pop2 != "UK2", "UK2"]) | ||
|
||
ind_NW <- which(ldist_to_centers[, "UK2"] < 6) | ||
ind_Fin <- which(ldist_to_centers[, "Finland"] < 7) | ||
ind_It <- which(ldist_to_centers[, "Italy"] < 6) | ||
|
||
run_GWAS <- function(ind) { | ||
big_univLinReg(G2, y.train = y[ind], ind.train = ind, | ||
covar.train = cbind(celiac$fam$sex, PC)[ind, ], | ||
ncores = NCORES) | ||
} | ||
|
||
gwas_NW <- run_GWAS(ind_NW) | ||
gwas_Fin <- run_GWAS(ind_Fin) | ||
gwas_It <- run_GWAS(ind_It) | ||
|
||
plot_grid( | ||
snp_manhattan(gwas_NW, CHR, POS, npoints = 20e3) + | ||
ggplot2::scale_y_log10(), | ||
snp_manhattan(gwas_Fin, CHR, POS, npoints = 20e3) + | ||
ggplot2::scale_y_log10(), | ||
snp_manhattan(gwas_It, CHR, POS, npoints = 20e3) + | ||
ggplot2::scale_y_log10(), | ||
ncol = 1 | ||
) | ||
|
||
ind_sig <- which(predict(gwas_NW, log10 = FALSE) < 1e-20) | ||
plot(gwas_NW$estim[ind_sig], gwas_Fin$estim[ind_sig]); abline(0, 1, col = "red") | ||
plot(gwas_NW$estim[ind_sig], gwas_It$estim[ind_sig]); abline(0, 1, col = "red") | ||
|
||
reg <- deming::deming(gwas_NW$estim[ind_sig] ~ gwas_Fin$estim[ind_sig] + 0, | ||
xstd = gwas_Fin$std.err[ind_sig], ystd = gwas_NW$std.err[ind_sig]) | ||
reg | ||
|
||
deming::deming(gwas_NW$estim[ind_sig] ~ gwas_It$estim[ind_sig] + 0, | ||
xstd = gwas_It$std.err[ind_sig], ystd = gwas_NW$std.err[ind_sig]) | ||
|
||
|
||
ind_chr6 <- which(CHR == 6) | ||
POS2 <- snp_asGeneticPos(CHR[ind_chr6], POS[ind_chr6]) | ||
corr_chr6_NW <- snp_cor(G, ind.row = ind_NW, ind.col = ind_chr6, | ||
infos.pos = POS2, size = 3 / 1000, ncores = NCORES) | ||
corr_chr6_Fin <- snp_cor(G, ind.row = ind_Fin, ind.col = ind_chr6, | ||
infos.pos = POS2, size = 3 / 1000, ncores = NCORES) | ||
corr_chr6_It <- snp_cor(G, ind.row = ind_It, ind.col = ind_chr6, | ||
infos.pos = POS2, size = 3 / 1000, ncores = NCORES) | ||
|
||
ind <- Matrix::which(corr_chr6_NW^2 > 0.1 & corr_chr6_Fin^2 > 0.1, arr.ind = TRUE) | ||
ind2 <- ind[ind[, 1] > ind[, 2], ] | ||
plot(corr_chr6_Fin[ind2], corr_chr6_NW[ind2], pch = 20); abline(0, 1, col = "red") | ||
|
||
|
||
ind3 <- Matrix::which(corr_chr6_NW^2 > 0.1 & corr_chr6_It^2 > 0.1, arr.ind = TRUE) | ||
ind4 <- ind3[ind3[, 1] > ind3[, 2], ] | ||
plot(corr_chr6_It[ind4], corr_chr6_NW[ind4], pch = 20); abline(0, 1, col = "red") | ||
|
||
plot(corr_chr6_It[ind4], corr_chr6_Fin[ind4], pch = 20); abline(0, 1, col = "red") | ||
|
||
|
||
ind_UK2 <- which(ldist_to_centers[, "UK2"] < 5 & pop2 == "UK2") | ||
|
||
gwas_UK1 <- run_GWAS(ind_UK1) | ||
gwas_UK2 <- run_GWAS(ind_UK2) | ||
|
||
plot_grid( | ||
snp_manhattan(gwas_UK1, CHR, POS, npoints = 20e3) + | ||
ggplot2::scale_y_log10(), | ||
snp_manhattan(gwas_UK2, CHR, POS, npoints = 20e3) + | ||
ggplot2::scale_y_log10(), | ||
ncol = 1 | ||
) | ||
corr_chr6_UK2 <- snp_cor(G, ind.row = ind_UK2, ind.col = ind_chr6, | ||
infos.pos = POS2, size = 3 / 1000, ncores = NCORES) | ||
plot(corr_chr6_UK1[ind2], corr_chr6_UK2[ind2], pch = 20); abline(0, 1, col = "red") | ||
|
||
|
||
ind_Net <- which(ldist_to_centers[, "Netherlands"] < 5 & pop2 == "Netherlands") | ||
corr_chr6_Net <- snp_cor(G, ind.row = ind_Net, ind.col = ind_chr6, | ||
infos.pos = POS2, size = 3 / 1000, ncores = NCORES) | ||
plot(corr_chr6_Net[ind2], corr_chr6_UK2[ind2], pch = 20); abline(0, 1, col = "red") | ||
|
||
|
||
ind_UK1 <- sample(which(ldist_to_centers[, "UK1"] < 5 & pop2 == "UK1"), length(ind_Net)) | ||
corr_chr6_UK1 <- snp_cor(G, ind.row = ind_UK1, ind.col = ind_chr6, | ||
infos.pos = POS2, size = 3 / 1000, ncores = NCORES) | ||
plot(corr_chr6_UK1[ind2], corr_chr6_UK2[ind2], pch = 20); abline(0, 1, col = "red") | ||
|
||
|
||
ind_max <- which.min(predict(gwas_NW)) | ||
ind5 <- ind_max + c(-4:2, 4, 10) | ||
plot_grid( | ||
snp_manhattan(gwas_NW[ind5, ], CHR[ind5], POS[ind5]) + | ||
ggplot2::scale_y_log10(), | ||
snp_manhattan(gwas_Fin[ind5, ], CHR[ind5], POS[ind5]) + | ||
ggplot2::scale_y_log10(), | ||
snp_manhattan(gwas_It[ind5, ], CHR[ind5], POS[ind5]) + | ||
ggplot2::scale_y_log10(), | ||
ncol = 1 | ||
) | ||
|
||
ind6 <- match(ind5, ind_chr6) | ||
options(max.print = 200) | ||
rbind( | ||
corr_chr6_NW[ind6, ind6[5]], | ||
corr_chr6_Fin[ind6, ind6[5]], | ||
corr_chr6_It[ind6, ind6[5]]) |
Oops, something went wrong.