Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

data-augmentation component and his tests #129

Open
wants to merge 1 commit into
base: main
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
154 changes: 154 additions & 0 deletions tasks/data-augmentation/Deployment.ipynb
Original file line number Diff line number Diff line change
@@ -0,0 +1,154 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Data Augmentation - Experimento\n",
"\n",
"Data Augmentation é uma estratégia bastante utilizada para impulsionar treinamento de modelos. Se baseando em diversas transformações nos dados, as abordagens de Data Augmentation conseguem multiplicar os seus dados mantendo os mesmos rótulos. Exemplos dessas transformações em dados de imagens são rotações, translações, mudança de coloração, e etc.\n",
"\n",
"A implementação desse componente foi feita utilizando a biblioteca [torchvision](https://pytorch.org/vision/stable/index.html)."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Declaração de Classe para Predições em Tempo Real\n",
"\n",
"A tarefa de implantação cria um serviço REST para predições em tempo-real.<br>\n",
"Para isso você deve criar uma classe `Model` que implementa o método `predict`."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"%%writefile Model.py\n",
"from typing import List, Iterable, Dict, Union\n",
"\n",
"import numpy as np\n",
"import cv2\n",
"import torchvision.transforms as T\n",
"import joblib\n",
"from PIL import Image\n",
"import io\n",
"from io import StringIO\n",
"\n",
"class Model:\n",
" \n",
" def __init__(self):\n",
" self.loaded = False\n",
" \n",
" def load(self):\n",
" # Carrega artefatos: estimador, etc\n",
" artifacts = joblib.load(\"/tmp/data/data_augmentation.joblib\")\n",
" self.artifacts = artifacts[\"data_augmentation_parameters\"]\n",
" \n",
" self.parameters = [ self.artifacts[\"augmentation_rate\"],\n",
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Oi @vitoryeso, essa variável poderia ser um dicionário, evitando ter que fazer o "hard code" da posição do elemento que você quer escolher, o que acaba ficando dependente da ordem.

" self.artifacts[\"horizontal_flip\"],\n",
" self.artifacts[\"vertical_flip\"],\n",
" self.artifacts[\"crop\"],\n",
" self.artifacts[\"color_jitter\"],\n",
" self.artifacts[\"perspective\"],\n",
" self.artifacts[\"rotate\"] ]\n",
"\n",
" self.augmentation_rate = self.parameters[0]\n",
" \n",
" # Load Model\n",
"\n",
" self.jitter = T.ColorJitter(brightness=.5, hue=.3)\n",
" self.perspective_transformer = T.RandomPerspective(distortion_scale=0.6, p=1.0)\n",
" self.rotater = T.RandomRotation(degrees=(0, 180))\n",
" self.hflip = T.RandomHorizontalFlip()\n",
" self.vflip = T.RandomVerticalFlip() \n",
" \n",
" #self.transformations = [ self.jitter, self.perspective_transformer, self.rotater, self.crop, self.hflip, self.vflip ]\n",
" \n",
" self.loaded = True\n",
" \n",
" def predict(self, X, feature_names, meta=None):\n",
"\n",
" if not self.loaded:\n",
" self.load()\n",
" \n",
" # Check if data is a bytes\n",
" if isinstance(X, bytes):\n",
" im_bytes = X # Get image bytes\n",
" \n",
" # If not, should be a list or ndarray\n",
" else:\n",
" # Garantee is a ndarray\n",
" X = np.array(X)\n",
" \n",
" # Seek for extra dimension\n",
" if len(X.shape) == 2:\n",
" im_bytes = X[0,0] # Get image bytes\n",
" \n",
" else:\n",
" im_bytes = X[0] # Get image bytes\n",
" \n",
" # Preprocess img bytes to img_arr\n",
" im_arr = np.frombuffer(im_bytes, dtype=np.uint8)\n",
" img = cv2.imdecode(im_arr, flags=cv2.IMREAD_COLOR)\n",
" img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)\n",
" img = Image.fromarray(img) # convert to PIL image\n",
"\n",
" width, height = img.size\n",
" crop_size = (int(width * 0.8),int(height * 0.8)) \n",
" self.crop = T.RandomCrop(crop_size)\n",
"\n",
" transformed_images = []\n",
" if self.parameters[1]:\n",
" transformed_images += [self.hflip(img) for _ in range(self.augmentation_rate) ]\n",
" if self.parameters[2]:\n",
" transformed_images += [self.vflip(img) for _ in range(self.augmentation_rate) ]\n",
" if self.parameters[3]:\n",
" transformed_images += [self.crop(img) for _ in range(self.augmentation_rate) ]\n",
" if self.parameters[4]:\n",
" transformed_images += [self.jitter(img) for _ in range(self.augmentation_rate) ]\n",
" if self.parameters[5]:\n",
" transformed_images += [self.perspective_transformer(img) for _ in range(self.augmentation_rate) ]\n",
" if self.parameters[6]:\n",
" transformed_images += [self.rotater(img) for _ in range(self.augmentation_rate) ]\n",
" \n",
" # Compile results \n",
" results = []\n",
" for transf_img in transformed_images:\n",
" buff = io.BytesIO()\n",
" transf_img.save(buff, format=\"JPEG\")\n",
" results.append(buff.getvalue().decode(\"latin1\"))\n",
" \n",
" return results"
]
}
],
"metadata": {
"celltoolbar": "Tags",
"experiment_id": "f795343b-5a9d-46a0-8336-41d5079e49a8",
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.8"
},
"operator_id": "db47ff60-929f-4dad-ad91-efbb373367cd",
"task_id": "e7e66db7-1bef-4f64-8c41-834dc112d518"
},
"nbformat": 4,
"nbformat_minor": 4
}
363 changes: 363 additions & 0 deletions tasks/data-augmentation/Experiment.ipynb

Large diffs are not rendered by default.

138 changes: 138 additions & 0 deletions tests/test_data-augmentation.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,138 @@
import os
import unittest
import uuid

import papermill
import pandas as pd
import numpy as np
from base64 import b64encode
import io
from PIL import Image

from tests import datasets, server

EXPERIMENT_ID = str(uuid.uuid4())
OPERATOR_ID = str(uuid.uuid4())
RUN_ID = str(uuid.uuid4())

TEMPORARY_DIR = "tmp"
LOCAL_TEST_DATA_PATH = f"/{TEMPORARY_DIR}/data/yolo.zip"
LOCAL_OUTPUT_DATA_PATH = f"/{TEMPORARY_DIR}/data/"
EXPERIMENT_NOTEBOOK = "Experiment.ipynb"
DEPLOYMENT_NOTEBOOK = "Deployment.ipynb"
DEV_DIR = "/dev/null"


class TestDataAugmentation(unittest.TestCase):

def setUp(self):
# Set environment variables needed to run notebooks
os.environ["EXPERIMENT_ID"] = EXPERIMENT_ID
os.environ["OPERATOR_ID"] = OPERATOR_ID
os.environ["RUN_ID"] = RUN_ID

datasets.yolo()

os.chdir("tasks/data-augmentation")

def tearDown(self):
datasets.clean()
os.chdir("../../")

def test_experiment_default_parameters(self):
papermill.execute_notebook(
EXPERIMENT_NOTEBOOK,
DEV_DIR,
parameters=dict(
dataset=LOCAL_TEST_DATA_PATH,
image_path="image_path",
augmentation_rate=5,
horizontal_flip=True,
vertical_flip=True,
crop=True,
color_jitter=True,
perspective=True,
rotate=True
),
)

# Verify output data
files = os.listdir(LOCAL_OUTPUT_DATA_PATH + "yolo/test/")

# 6 transformations * augmentation_rate + original_image
self.assertEqual(len(files), 6*5 + 1)
out_data = Image.open(LOCAL_OUTPUT_DATA_PATH + "yolo/test/sunflower_transformed_img_3.png")
self.assertEqual(out_data.format, "PNG")

# Deployment pipeline
papermill.execute_notebook(
DEPLOYMENT_NOTEBOOK,
DEV_DIR,
)


#data = datasets.landspaces_test_data()
for ext in ['png', 'jpg']:

data = datasets.image_testdata(kind='objects', ext=ext)

with server.Server() as s:
response = s.test(data=data, timeout=10)

images = []
for raw_str in response["ndarray"]:
raw_bytes = bytes(raw_str, "latin1")
img = Image.open(io.BytesIO(raw_bytes), formats=["JPEG"])
images.append(img)

self.assertEqual(len(images), 5*6)
self.assertEqual(images[0].size, (930, 1048))

def test_experiment_no_crop_parameters(self):
papermill.execute_notebook(
EXPERIMENT_NOTEBOOK,
DEV_DIR,
parameters=dict(
dataset=LOCAL_TEST_DATA_PATH,
image_path="image_path",
augmentation_rate=5,
horizontal_flip=True,
vertical_flip=True,
crop=False,
color_jitter=True,
perspective=True,
rotate=True
),
)

# Verify output data
files = os.listdir(LOCAL_OUTPUT_DATA_PATH + "yolo/test/")

# 6 transformations * augmentation_rate + original_image
self.assertEqual(len(files), 5*5 + 1)
out_data = Image.open(LOCAL_OUTPUT_DATA_PATH + "yolo/test/sunflower_transformed_img_0.png")
self.assertEqual(out_data.format, "PNG")

# Deployment pipeline
papermill.execute_notebook(
DEPLOYMENT_NOTEBOOK,
DEV_DIR,
)


#data = datasets.landspaces_test_data()
for ext in ['png', 'jpg']:

data = datasets.image_testdata(kind='objects', ext=ext)

with server.Server() as s:
response = s.test(data=data, timeout=10)

images = []
for raw_str in response["ndarray"]:
raw_bytes = bytes(raw_str, "latin1")
img = Image.open(io.BytesIO(raw_bytes), formats=["JPEG"])
images.append(img)

self.assertEqual(len(images), 5*5)
self.assertEqual(images[0].size, (930, 1048))