forked from keras-team/keras-hub
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Port albert transformer checkpoint (keras-team#1767)
* port albert * update test * resolve comments * changed name * minor formatting fixes --------- Co-authored-by: Matt Watson <[email protected]>
- Loading branch information
Showing
3 changed files
with
244 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,207 @@ | ||
# Copyright 2024 The KerasNLP Authors | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# https://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
import numpy as np | ||
|
||
from keras_nlp.src.utils.preset_utils import HF_CONFIG_FILE | ||
from keras_nlp.src.utils.preset_utils import get_file | ||
from keras_nlp.src.utils.preset_utils import jax_memory_cleanup | ||
from keras_nlp.src.utils.preset_utils import load_config | ||
from keras_nlp.src.utils.transformers.safetensor_utils import SafetensorLoader | ||
|
||
|
||
def convert_backbone_config(transformers_config): | ||
return { | ||
"vocabulary_size": transformers_config["vocab_size"], | ||
"num_layers": transformers_config["num_hidden_layers"], | ||
"num_heads": transformers_config["num_attention_heads"], | ||
"embedding_dim": transformers_config["embedding_size"], | ||
"hidden_dim": transformers_config["hidden_size"], | ||
"intermediate_dim": transformers_config["intermediate_size"], | ||
"num_groups": transformers_config["num_hidden_groups"], | ||
"num_inner_repetitions": transformers_config["inner_group_num"], | ||
"dropout": transformers_config["attention_probs_dropout_prob"], | ||
"max_sequence_length": transformers_config["max_position_embeddings"], | ||
"num_segments": transformers_config["type_vocab_size"], | ||
} | ||
|
||
|
||
def convert_weights(backbone, loader): | ||
# Embeddings | ||
loader.port_weight( | ||
keras_variable=backbone.token_embedding.embeddings, | ||
hf_weight_key="albert.embeddings.word_embeddings.weight", | ||
) | ||
loader.port_weight( | ||
keras_variable=backbone.position_embedding.position_embeddings, | ||
hf_weight_key="albert.embeddings.position_embeddings.weight", | ||
) | ||
loader.port_weight( | ||
keras_variable=backbone.segment_embedding.embeddings, | ||
hf_weight_key="albert.embeddings.token_type_embeddings.weight", | ||
) | ||
|
||
# Normalization | ||
loader.port_weight( | ||
keras_variable=backbone.embeddings_layer_norm.gamma, | ||
hf_weight_key="albert.embeddings.LayerNorm.weight", | ||
) | ||
loader.port_weight( | ||
keras_variable=backbone.embeddings_layer_norm.beta, | ||
hf_weight_key="albert.embeddings.LayerNorm.bias", | ||
) | ||
|
||
# Encoder Embeddings | ||
loader.port_weight( | ||
keras_variable=backbone.embeddings_projection.kernel, | ||
hf_weight_key="albert.encoder.embedding_hidden_mapping_in.weight", | ||
hook_fn=lambda hf_tensor, _: np.transpose(hf_tensor, axes=(1, 0)), | ||
) | ||
loader.port_weight( | ||
keras_variable=backbone.embeddings_projection.bias, | ||
hf_weight_key="albert.encoder.embedding_hidden_mapping_in.bias", | ||
) | ||
|
||
# Encoder Group Layers | ||
for group_idx in range(backbone.num_groups): | ||
for inner_layer_idx in range(backbone.num_inner_repetitions): | ||
keras_group = backbone.get_layer( | ||
f"group_{group_idx}_inner_layer_{inner_layer_idx}" | ||
) | ||
hf_group_prefix = ( | ||
"albert.encoder.albert_layer_groups." | ||
f"{group_idx}.albert_layers.{inner_layer_idx}." | ||
) | ||
|
||
loader.port_weight( | ||
keras_variable=keras_group._self_attention_layer.query_dense.kernel, | ||
hf_weight_key=f"{hf_group_prefix}attention.query.weight", | ||
hook_fn=lambda hf_tensor, keras_shape: np.reshape( | ||
np.transpose(hf_tensor), keras_shape | ||
), | ||
) | ||
loader.port_weight( | ||
keras_variable=keras_group._self_attention_layer.query_dense.bias, | ||
hf_weight_key=f"{hf_group_prefix}attention.query.bias", | ||
hook_fn=lambda hf_tensor, keras_shape: np.reshape( | ||
hf_tensor, keras_shape | ||
), | ||
) | ||
loader.port_weight( | ||
keras_variable=keras_group._self_attention_layer.key_dense.kernel, | ||
hf_weight_key=f"{hf_group_prefix}attention.key.weight", | ||
hook_fn=lambda hf_tensor, keras_shape: np.reshape( | ||
np.transpose(hf_tensor), keras_shape | ||
), | ||
) | ||
loader.port_weight( | ||
keras_variable=keras_group._self_attention_layer.key_dense.bias, | ||
hf_weight_key=f"{hf_group_prefix}attention.key.bias", | ||
hook_fn=lambda hf_tensor, keras_shape: np.reshape( | ||
hf_tensor, keras_shape | ||
), | ||
) | ||
loader.port_weight( | ||
keras_variable=keras_group._self_attention_layer.value_dense.kernel, | ||
hf_weight_key=f"{hf_group_prefix}attention.value.weight", | ||
hook_fn=lambda hf_tensor, keras_shape: np.reshape( | ||
np.transpose(hf_tensor), keras_shape | ||
), | ||
) | ||
loader.port_weight( | ||
keras_variable=keras_group._self_attention_layer.value_dense.bias, | ||
hf_weight_key=f"{hf_group_prefix}attention.value.bias", | ||
hook_fn=lambda hf_tensor, keras_shape: np.reshape( | ||
hf_tensor, keras_shape | ||
), | ||
) | ||
loader.port_weight( | ||
keras_variable=keras_group._self_attention_layer.output_dense.kernel, | ||
hf_weight_key=f"{hf_group_prefix}attention.dense.weight", | ||
hook_fn=lambda hf_tensor, keras_shape: np.reshape( | ||
np.transpose(hf_tensor), keras_shape | ||
), | ||
) | ||
loader.port_weight( | ||
keras_variable=keras_group._self_attention_layer.output_dense.bias, | ||
hf_weight_key=f"{hf_group_prefix}attention.dense.bias", | ||
hook_fn=lambda hf_tensor, keras_shape: np.reshape( | ||
hf_tensor, keras_shape | ||
), | ||
) | ||
loader.port_weight( | ||
keras_variable=keras_group._self_attention_layer_norm.gamma, | ||
hf_weight_key=f"{hf_group_prefix}attention.LayerNorm.weight", | ||
) | ||
loader.port_weight( | ||
keras_variable=keras_group._self_attention_layer_norm.beta, | ||
hf_weight_key=f"{hf_group_prefix}attention.LayerNorm.bias", | ||
) | ||
loader.port_weight( | ||
keras_variable=keras_group._feedforward_intermediate_dense.kernel, | ||
hf_weight_key=f"{hf_group_prefix}ffn.weight", | ||
hook_fn=lambda hf_tensor, _: np.transpose( | ||
hf_tensor, axes=(1, 0) | ||
), | ||
) | ||
loader.port_weight( | ||
keras_variable=keras_group._feedforward_intermediate_dense.bias, | ||
hf_weight_key=f"{hf_group_prefix}ffn.bias", | ||
) | ||
loader.port_weight( | ||
keras_variable=keras_group._feedforward_output_dense.kernel, | ||
hf_weight_key=f"{hf_group_prefix}ffn_output.weight", | ||
hook_fn=lambda hf_tensor, _: np.transpose( | ||
hf_tensor, axes=(1, 0) | ||
), | ||
) | ||
loader.port_weight( | ||
keras_variable=keras_group._feedforward_output_dense.bias, | ||
hf_weight_key=f"{hf_group_prefix}ffn_output.bias", | ||
) | ||
loader.port_weight( | ||
keras_variable=keras_group._feedforward_layer_norm.gamma, | ||
hf_weight_key=f"{hf_group_prefix}full_layer_layer_norm.weight", | ||
) | ||
loader.port_weight( | ||
keras_variable=keras_group._feedforward_layer_norm.beta, | ||
hf_weight_key=f"{hf_group_prefix}full_layer_layer_norm.bias", | ||
) | ||
|
||
# Pooler | ||
loader.port_weight( | ||
keras_variable=backbone.pooled_dense.kernel, | ||
hf_weight_key="albert.pooler.weight", | ||
hook_fn=lambda hf_tensor, _: np.transpose(hf_tensor, axes=(1, 0)), | ||
) | ||
loader.port_weight( | ||
keras_variable=backbone.pooled_dense.bias, | ||
hf_weight_key="albert.pooler.bias", | ||
) | ||
|
||
return backbone | ||
|
||
|
||
def load_albert_backbone(cls, preset, load_weights): | ||
transformers_config = load_config(preset, HF_CONFIG_FILE) | ||
keras_config = convert_backbone_config(transformers_config) | ||
backbone = cls(**keras_config) | ||
if load_weights: | ||
jax_memory_cleanup(backbone) | ||
with SafetensorLoader(preset) as loader: | ||
convert_weights(backbone, loader) | ||
return backbone | ||
|
||
|
||
def load_albert_tokenizer(cls, preset): | ||
return cls(get_file(preset, "spiece.model")) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,29 @@ | ||
# Copyright 2024 The KerasNLP Authors | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# https://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
import pytest | ||
|
||
from keras_nlp.src.models.albert.albert_classifier import AlbertClassifier | ||
from keras_nlp.src.tests.test_case import TestCase | ||
|
||
|
||
class TestTask(TestCase): | ||
@pytest.mark.large | ||
def test_convert_tiny_preset(self): | ||
model = AlbertClassifier.from_preset( | ||
"hf://albert/albert-base-v2", num_classes=2 | ||
) | ||
prompt = "That movies was terrible." | ||
model.predict([prompt]) | ||
|
||
# TODO: compare numerics with huggingface model |