-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathtrain_spg.py
executable file
·448 lines (409 loc) · 21.7 KB
/
train_spg.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
#!/usr/bin/env python
import argparse
import os
from tqdm import tqdm
from collections import namedtuple, deque
import pprint as pp
import numpy as np
import time
import json
import h5py
import copy
import pickle
# DEBUG
import pdb
import warnings
warnings.filterwarnings("ignore")
import torch
import torch.optim as optim
import torch.autograd as autograd
from torch.optim import lr_scheduler
from torch.autograd import Variable
from torch.utils.data import DataLoader
from tensorboard_logger import configure, log_value, Logger
from spg.models import SPGSequentialActor, SPGMatchingActor
from spg.models import SPGSequentialCritic, SPGMatchingCritic
from spg.memory import Memory as ReplayBuffer
import spg.util as util
# tasks
from envs import dataset
parser = argparse.ArgumentParser(description="")
# Data
parser.add_argument('--task', default='tsp_10', help='Supported: {sort, mwm, mwm2D, tsp}')
parser.add_argument('--parallel_envs', type=int, default=32)
parser.add_argument('--batch_size', type=int, default=128)
parser.add_argument('--train_size', type=int, default=500000)
parser.add_argument('--test_size', type=int, default=10000)
# Model cfg options here
parser.add_argument('--n_features', type=int, default=2)
parser.add_argument('--n_nodes', type=int, default=10)
parser.add_argument('--arch', type=str, default='rnn')
parser.add_argument('--sinkhorn_iters', type=int, default=10)
parser.add_argument('--sinkhorn_tau', type=float, default=0.05)
parser.add_argument('--actor_lr', type=float, default=3e-4)
parser.add_argument('--critic_lr', type=float, default=3e-4)
parser.add_argument('--actor_lr_decay_rate', type=float, default=0.95)
parser.add_argument('--critic_lr_decay_rate', type=float, default=0.95)
parser.add_argument('--actor_lr_decay_step', type=int, default=50000)
parser.add_argument('--critic_lr_decay_step', type=int, default=5000)
parser.add_argument('--k_exchange', type=int, default=2)
parser.add_argument('--epsilon', type=float, default=1.)
parser.add_argument('--epsilon_decay_rate', type=float, default=0.97)
parser.add_argument('--epsilon_decay_step', type=int, default=500000)
parser.add_argument('--embedding_dim', type=int, default=128)
parser.add_argument('--rnn_dim', type=int, default=128)
parser.add_argument('--bidirectional', type=util.str2bool, default=True)
# Training cfg options here
parser.add_argument('--n_epochs', type=int, default=10)
parser.add_argument('--random_seed', type=int, default=1234)
parser.add_argument('--max_grad_norm', type=float, default=1.0, help='Gradient clipping')
parser.add_argument('--buffer_size', type=int, default=1e6)
parser.add_argument('--log_step', type=int, default=100, help='Log info every log_step steps')
parser.add_argument('--disable_critic_aux_loss', type=util.str2bool, default=False)
parser.add_argument('--actor_workers', type=int, default=4)
# CUDA
parser.add_argument('--use_cuda', type=util.str2bool, default=True)
parser.add_argument('--cuda_device', type=int, default=0)
# Store the replay buffer on the GPU? For N <= 20
parser.add_argument('--replay_buffer_gpu', type=util.str2bool, default=True)
# Misc
parser.add_argument('--run_name', type=str, default='0')
parser.add_argument('--base_dir', type=str, default='/media/pemami/DATA/sinkhorn-pg/')
parser.add_argument('--epoch_start', type=int, default=0, help='Restart at epoch #')
parser.add_argument('--save_model', type=util.str2bool, default=False, help='Save after epoch')
parser.add_argument('--save_stats', type=util.str2bool, default=True)
parser.add_argument('--actor_load_path', type=str, default='')
parser.add_argument('--critic_load_path', type=str, default='')
parser.add_argument('--disable_tensorboard', type=util.str2bool, default=True)
parser.add_argument('--disable_progress_bar', type=util.str2bool, default=False)
parser.add_argument('--_id', type=str, default='123456789', help='FGLab experiment ID')
parser.add_argument('--num_workers', type=int, default=0)
parser.add_argument('--make_only', type=int, default=3)
Experience = namedtuple('Experience', ['state', 'action', 'reward'])
DEBUG = False
#########################################
## Training funcs ##
#########################################
def evaluate_model(args, count):
# Pretty print the run args
pp.pprint(args)
if not args['disable_tensorboard'] and count == 0:
# append last 6 digits of experiment id to run name
args['run_name'] = args['_id'][-6:] + '-' + args['run_name']
configure(os.path.join(args['base_dir'], 'results', 'logs', args['task'], args['run_name']), flush_secs=2)
task = args['task'].split('_')
args['COP'] = task[0] # the combinatorial optimization problem
# Load the model parameters from a saved state
if args['actor_load_path'] != '' and args['critic_load_path'] != '':
print(' [*] Loading models from {}'.format(args['critic_load_path']))
actor = torch.load(
os.path.join(os.getcwd(),
args['actor_load_path']), map_location=lambda storage, loc: storage)
critic = torch.load(
os.path.join(os.getcwd(),
args['critic_load_path']), map_location=lambda storage, loc: storage)
if args['use_cuda']:
actor.cuda_after_load()
critic.cuda_after_load()
else:
# initialize RL model
if args['arch'] == 'fc':
print("Architecture not supported")
exit(1)
elif args['arch'] == 'sequential':
actor = SPGSequentialActor(args['n_features'], args['n_nodes'], args['embedding_dim'],
args['rnn_dim'], args['bidirectional'], args['sinkhorn_iters'],
args['sinkhorn_tau'], args['actor_workers'], args['use_cuda'])
critic = SPGSequentialCritic(args['n_features'], args['n_nodes'], args['embedding_dim'],
args['rnn_dim'], args['bidirectional'], args['use_cuda'])
elif args['arch'] == 'matching':
actor = SPGMatchingActor(args['n_features'], args['n_nodes'], args['embedding_dim'],
args['rnn_dim'], args['sinkhorn_iters'], args['sinkhorn_tau'],
args['actor_workers'], args['use_cuda'])
critic = SPGMatchingCritic(args['n_features'], args['n_nodes'], args['embedding_dim'],
args['rnn_dim'], args['use_cuda'])
args['save_dir'] = os.path.join(args['base_dir'], 'results', 'models', args['COP'], 'spg', args['arch'], args['_id'])
try:
os.makedirs(args['save_dir'])
except:
pass
if args['use_cuda']:
actor = actor.cuda()
critic = critic.cuda()
#Optimizers
actor_optim = optim.Adam(actor.parameters(), lr=args['actor_lr'])
critic_optim = optim.Adam(critic.parameters(), lr=args['critic_lr'])
critic_loss = torch.nn.MSELoss()
critic_aux_loss = torch.nn.MSELoss()
if args['use_cuda']:
critic_loss = critic_loss.cuda()
critic_aux_loss = critic_aux_loss.cuda()
actor_scheduler = lr_scheduler.MultiStepLR(actor_optim,
range(args['actor_lr_decay_step'], args['actor_lr_decay_step'] * 1000,
args['actor_lr_decay_step']), gamma=args['actor_lr_decay_rate'])
critic_scheduler = lr_scheduler.MultiStepLR(critic_optim,
range(args['critic_lr_decay_step'], args['critic_lr_decay_step'] * 1000,
args['critic_lr_decay_step']), gamma=args['critic_lr_decay_rate'])
# Count the number of model parameters
model_parameters = filter(lambda p: p.requires_grad, actor.parameters())
print("# of trainable actor parameters: {}".format(sum([np.prod(p.size()) for p in model_parameters])))
model_parameters = filter(lambda p: p.requires_grad, critic.parameters())
print("# of trainable critic parameters: {}".format(sum([np.prod(p.size()) for p in model_parameters])))
# Instantiate replay buffer
observation_shape = [args['n_nodes'], args['n_features']]
if args['COP'] == 'mwm2D':
observation_shape[0] *= 2
replay_buffer = ReplayBuffer(args['buffer_size'], action_shape=[args['n_nodes'], args['n_nodes']],
observation_shape=observation_shape, use_cuda=args['replay_buffer_gpu'])
# Get dataloaders for train and test datasets
args, env, training_dataloader, test_dataloader = dataset.build(args, args['epoch_start'])
if args['COP'] == 'mwm2D':
mwm2D_opt = test_dataloader.dataset.get_average_optimal_weight()
# Open files for writing results
if args['save_stats']:
fglab_results_dir = os.path.join(args['base_dir'], 'results', 'fglab', args['model'], args['COP'], args['_id'])
raw_results_dir = os.path.join(args['base_dir'], 'results', 'raw', args['model'], args['COP'], args['_id'])
try:
os.makedirs(fglab_results_dir)
os.makedirs(raw_results_dir)
except:
pass
fglab_results = open(os.path.join(fglab_results_dir, 'scores.json'), 'w')
raw_results = h5py.File(os.path.join(raw_results_dir, 'raw.hdf5'), 'w')
epoch = args['epoch_start']
# approx, since we throw away minibatches that aren't complete
num_steps_per_epoch = np.ceil(args['train_size'] / float(args['parallel_envs']))
train_step = int(epoch * num_steps_per_epoch)
eval_step = int(epoch * (np.ceil(args['test_size'] / float(args['parallel_envs']))))
epsilon = args['epsilon']
epsilon_step = args['epsilon_decay_step']
epsilon_decay = ((epsilon * args['epsilon_decay_rate']) - epsilon) / (epsilon_step / float(args['parallel_envs']))
running_avg_R = deque(maxlen=100)
running_avg_bd = deque(maxlen=100)
tot_R = []
birkhoff_dist = []
scores = {'_scores': {}}
eval_means = []
eval_stddevs = []
def eval(eval_step, final=False):
# Eval
eval_R = []
eval_birkhoff_dist = []
ratios = []
actor.eval()
critic.eval()
for obs in tqdm(test_dataloader, disable=args['disable_progress_bar']):
obs = obs.pin_memory()
obs = Variable(obs, volatile=True)
if args['use_cuda']:
obs = obs.cuda(async=True)
psi, action = actor(obs)
action = Variable(action, volatile=True)
dist = torch.sum(torch.sum(psi * action, dim=1), dim=1) / args['n_nodes']
if args['COP'] == 'sort' or args['COP'] == 'tsp':
# apply the permutation to the input
solutions = torch.matmul(torch.transpose(obs, 1, 2), action)
if args['COP'] == 'tsp':
solutions = torch.transpose(solutions, 1, 2)
R = env(solutions, args['use_cuda'])
elif args['COP'] == 'mwm2D':
matchings = torch.matmul(torch.transpose(obs[:,args['n_nodes']:2*args['n_nodes'],:], 1, 2), action)
matchings = torch.transpose(matchings, 1, 2)
matchings = torch.cat([obs[:,0:args['n_nodes'],:], matchings], dim=1)
R = env(matchings, args['use_cuda'])
eval_R.append(R.data.cpu().numpy())
eval_birkhoff_dist.append(dist.data.cpu().numpy())
if args['COP'] == 'mwm2D':
ratios.append(R.data.cpu().numpy() / mwm2D_opt)
eval_step += 1
# flatten
eval_R = np.array(eval_R).ravel()
eval_birkhoff_dist = np.array(eval_birkhoff_dist).ravel()
mean_eval_R = np.mean(eval_R)
stddev_eval_R = np.std(eval_R)
mean_eval_birkhoff_dist = np.mean(eval_birkhoff_dist)
scores['_scores']['eval_avg_reward_{}'.format(train_step * args['parallel_envs'])] = mean_eval_R.item()
#scores['_scores']['eval_dist_to_nearest_vertex_{}'.format(train_step * args['parallel_envs'])] = mean_eval_birkhoff_dist.item()
eval_means.append(mean_eval_R.item())
eval_stddevs.append(stddev_eval_R.item())
if args['COP'] == 'mwm2D':
scores['_scores']['optimality_ratio_{}'.format(train_step * args['parallel_envs'])] = float(np.mean(ratios))
if args['COP'] == 'mwm2D':
print('avg. optimal matching weight: {:.4f}, ratio: {}'.format(mwm2D_opt, np.mean(ratios)))
print('eval after {} train steps, got avg reward: {:.4f} and dist to nearest vertex of Birkhoff poly: {:.4f}'.format(
train_step * args['parallel_envs'], mean_eval_R, mean_eval_birkhoff_dist))
if not args['disable_tensorboard']:
log_value('Eval avg reward', mean_eval_R, eval_step)
log_value('Eval std reward', stddev_eval_R, eval_step)
log_value('Eval dist to nearest vertex of Birkhoff poly', mean_eval_birkhoff_dist, eval_step)
return eval_step
i = 0
for i in range(epoch, epoch + args['n_epochs']):
eval_step = eval(eval_step)
if args['save_model']:
print(' [*] saving actor and critic...')
torch.save(actor, os.path.join(args['save_dir'], 'actor-epoch-{}.pt'.format(i+1)))
torch.save(critic, os.path.join(args['save_dir'], 'critic-epoch-{}.pt'.format(i+1)))
actor.train()
critic.train()
for obs in tqdm(training_dataloader, disable=args['disable_progress_bar']):
obs.pin_memory()
obs = Variable(obs, requires_grad=False)
if args['use_cuda']:
obs = obs.cuda(async=True)
psi, action = actor(obs)
action = Variable(action, requires_grad=False)
dist = torch.sum(torch.sum(psi * action, dim=1), dim=1) / args['n_nodes']
if action is None: # Nan'd out
if args['save_stats']:
scores['_scores']['eval_avg_reward_{}'.format(train_step * args['parallel_envs'])] = -1
json.dump(scores, fglab_results)
fglab_results.close()
return 0, 0
# do epsilon greedy exploration
if np.random.rand() < epsilon:
# Add noise in the form of 2-exchange neighborhoods
for r in range(args['k_exchange']):
# randomly choose two row idxs
idxs = np.random.randint(0, args['n_nodes'], size=2)
# swap the two rows
tmp = action[:, idxs[0]].clone()
tmp2 = action[:, idxs[1]].clone()
tmp3 = psi[:, idxs[0]].clone()
tmp4 = psi[:, idxs[1]].clone()
action[:, idxs[0]] = tmp2
action[:, idxs[1]] = tmp
psi[:, idxs[0]] = tmp4
psi[:, idxs[1]] = tmp3
if train_step > 0 and epsilon > 0.01:
epsilon += epsilon_decay
if args['COP'] == 'sort' or args['COP'] == 'tsp':
# apply the permutation to the input
solutions = torch.matmul(torch.transpose(obs, 1, 2), action)
if args['COP'] == 'tsp':
solutions = torch.transpose(solutions, 1, 2)
R = env(solutions, args['use_cuda'])
elif args['COP'] == 'mwm2D':
matchings = torch.matmul(torch.transpose(obs[:,args['n_nodes']:2*args['n_nodes'],:], 1, 2), action)
matchings = torch.transpose(matchings, 1, 2)
matchings = torch.cat([obs[:,0:args['n_nodes'],:], matchings], dim=1)
R = env(matchings, args['use_cuda'])
running_avg_R.append(copy.copy(R.data.cpu().numpy()))
running_avg_bd.append(copy.copy(dist.data.cpu().numpy()))
if args['save_stats']:
tot_R.append(R.data.cpu().numpy())
birkhoff_dist.append(dist.data.cpu().numpy())
if train_step % args['log_step'] == 0 and not DEBUG:
print('epoch: {}, step: {}, avg reward: {:.4f}, std dev: {:.4f}, min reward: {:.4f}, ' \
'max reward: {:.4f}, epsilon: {:.4f}, bd: {:.4f}'.format(
i+1, train_step, np.mean(running_avg_R), np.std(running_avg_R), np.min(running_avg_R),
np.max(running_avg_R), epsilon, np.mean(running_avg_bd)))
if args['COP'] == 'sort':
inn = []
out = []
for n,m in zip(torch.t(obs[0]).data[0], solutions[0].data[0]):
inn.append(n)
out.append(m)
print('step: {}, {}'.format(train_step, inn))
print('step: {}, {}'.format(train_step, out))
if not args['disable_tensorboard']:
log_value('Running avg reward', np.mean(running_avg_R), train_step)
log_value('Running avg std dev', np.std(running_avg_R), train_step)
log_value('Closeness to nearest vertex of Birkhoff Poly', np.mean(running_avg_bd), train_step)
log_value('Exploration $\epsilon$', epsilon, train_step)
if args['replay_buffer_gpu']:
replay_buffer.append(obs.data, action.data.byte(), psi.data, R.data)
else:
replay_buffer.append(obs.data.cpu(), action.data.byte().cpu(), psi.data.cpu(), R.data.cpu())
# sample from replay buffer if possible
if replay_buffer.nb_entries > args['batch_size']:
s_batch, a_batch, psi_batch, r_batch = replay_buffer.sample(args['batch_size'])
s_batch = torch.stack(s_batch)
a_batch = torch.stack(a_batch).float()
psi_batch = torch.stack(psi_batch)
targets = torch.stack(r_batch)
if not args['replay_buffer_gpu'] and args['use_cuda']:
s_batch.pin_memory()
psi_batch.pin_memory()
a_batch.pin_memory()
targets.pin_memory()
s_batch = Variable(s_batch.cuda(async=True))
psi_batch = Variable(psi_batch.cuda(async=True))
a_batch = Variable(a_batch.cuda(async=True))
targets = Variable(targets.cuda(async=True))
else:
s_batch = Variable(s_batch)
psi_batch = Variable(psi_batch)
a_batch = Variable(a_batch)
targets = Variable(targets)
# Compute Q(s_t, mu(s_t)=a_t)
# size is [batch_size, 1]
# N.B. We use the actions from the replay buffer to update the critic
# a_batch_t are the hard permutations
hard_Q = critic(s_batch, a_batch).squeeze(2)
critic_out = critic_loss(hard_Q, targets)
if not args['disable_critic_aux_loss']:
soft_Q = critic(s_batch, psi_batch).squeeze(2)
critic_aux_out = critic_aux_loss(soft_Q, hard_Q.detach())
critic_optim.zero_grad()
(critic_out + critic_aux_out).backward()
else:
critic_optim.zero_grad()
critic_out.backward()
# clip gradient norms
torch.nn.utils.clip_grad_norm(critic.parameters(),
args['max_grad_norm'], norm_type=2)
critic_optim.step()
critic_scheduler.step()
critic_optim.zero_grad()
actor_optim.zero_grad()
soft_action, _ = actor(s_batch, do_round=False)
# N.B. we use the action just computed from the actor net here, which
# will be used to compute the actor gradients
# compute gradient of critic network w.r.t. actions, grad Q_a(s,a)
soft_critic_out = critic(s_batch, soft_action).squeeze(2).mean()
actor_loss = -soft_critic_out
actor_loss.backward()
# clip gradient norms
torch.nn.utils.clip_grad_norm(actor.parameters(),
args['max_grad_norm'], norm_type=2)
actor_optim.step()
actor_scheduler.step()
if not args['disable_tensorboard']:
log_value('actor loss', actor_loss.data[0], train_step)
log_value('critic loss', critic_out.data[0], train_step)
log_value('avg hard Q', hard_Q.mean().data[0], train_step)
if not args['disable_critic_aux_loss']:
log_value('avg soft Q', soft_Q.mean().data[0], train_step)
train_step += 1
# Eval one last time
eval_step = eval(eval_step)
if args['save_model']:
print(' [*] saving model...')
torch.save(actor, os.path.join(args['save_dir'], 'actor-epoch-{}.pt'.format(i+1)))
torch.save(critic, os.path.join(args['save_dir'], 'critic-epoch-{}.pt'.format(i+1)))
if args['save_stats']:
# write training stats to file
json.dump(scores, fglab_results)
tot_R = np.array(tot_R).ravel()
birkhoff_dist = np.array(birkhoff_dist).ravel()
raw_results.create_dataset('training_rewards', data=tot_R)
raw_results.create_dataset('birkhoff_distance', data=birkhoff_dist)
#raw_results.create_dataset('eval_mean_rewards', data=eval_means)
#raw_results.create_dataset('eval_stddev_rewards', data=eval_stddevs)
# close files
fglab_results.close()
raw_results.close()
best_eval_mean = np.max(eval_means)
best_eval_stddev = eval_stddevs[np.argmax(eval_means)]
return best_eval_mean, best_eval_stddev
if __name__ == '__main__':
args = vars(parser.parse_args())
args['model'] = 'spg'
args['sl'] = False
# Set random seeds
torch.manual_seed(args['random_seed'])
#torch.cuda.manual_seed(args['random_seed'])
np.random.seed(args['random_seed'])
with torch.cuda.device(args['cuda_device']):
print("Score: {}".format(evaluate_model(args, 0)))