Skip to content
This repository was archived by the owner on Nov 15, 2023. It is now read-only.

Test benchmarks with storage info for bags PR #9468

Conversation

emostov
Copy link
Contributor

@emostov emostov commented Jul 30, 2021

Do not merge; running benchmarks with storage info

shawntabrizi and others added 30 commits July 18, 2021 22:38
…path=bin/node/cli/Cargo.toml -- benchmark --chain=dev --steps=50 --repeat=20 --pallet=pallet_balances --extrinsic=* --execution=wasm --wasm-execution=compiled --heap-pages=4096 --output=./frame/balances/src/weights.rs --template=./.maintain/frame-weight-template.hbs
…path=bin/node/cli/Cargo.toml -- benchmark --chain=dev --steps=50 --repeat=20 --pallet=pallet_balances --extrinsic=* --execution=wasm --wasm-execution=compiled --heap-pages=4096 --output=./frame/balances/src/weights.rs --template=./.maintain/frame-weight-template.hbs
…path=bin/node/cli/Cargo.toml -- benchmark --chain=dev --steps=50 --repeat=20 --pallet=pallet_staking --extrinsic=* --execution=wasm --wasm-execution=compiled --heap-pages=4096 --output=./frame/staking/src/weights.rs --template=./.maintain/frame-weight-template.hbs
…path=bin/node/cli/Cargo.toml -- benchmark --chain=dev --steps=50 --repeat=20 --pallet=pallet_balances --extrinsic=* --execution=wasm --wasm-execution=compiled --heap-pages=4096 --output=./frame/balances/src/weights.rs --template=./.maintain/frame-weight-template.hbs
…path=bin/node/cli/Cargo.toml -- benchmark --chain=dev --steps=50 --repeat=20 --pallet=pallet_staking --extrinsic=* --execution=wasm --wasm-execution=compiled --heap-pages=4096 --output=./frame/staking/src/weights.rs --template=./.maintain/frame-weight-template.hbs
…us/api (#9319)

* moved client code out of primitives

* bump ci

* Fixup from merge.

* Removed unused deps thanks to review feedback

* Removing unneeded deps

* updating lock file

* note about rustfmt

* fixed typo to bump ci

* Move lonely CacheKeyId to parent

* cargo fmt

* updating import style

* Update docs/STYLE_GUIDE.md

Co-authored-by: André Silva <[email protected]>

Co-authored-by: André Silva <[email protected]>
…path=bin/node/cli/Cargo.toml -- benchmark --chain=dev --steps=50 --repeat=20 --pallet=pallet_balances --extrinsic=* --execution=wasm --wasm-execution=compiled --heap-pages=4096 --output=./frame/balances/src/weights.rs --template=./.maintain/frame-weight-template.hbs
…path=bin/node/cli/Cargo.toml -- benchmark --chain=dev --steps=50 --repeat=20 --pallet=pallet_balances --extrinsic=* --execution=wasm --wasm-execution=compiled --heap-pages=4096 --output=./frame/balances/src/weights.rs --template=./.maintain/frame-weight-template.hbs
@emostov emostov removed request for andresilva and sorpaas July 30, 2021 21:53
@emostov emostov marked this pull request as draft July 30, 2021 21:54
@emostov
Copy link
Contributor Author

emostov commented Jul 30, 2021

/benchmark runtime pallet pallet_staking

@parity-benchapp
Copy link

parity-benchapp bot commented Jul 30, 2021

Benchmark Runtime Pallet for branch "zeke-bags-bench-storage-info" with command cargo run --quiet --release --features=runtime-benchmarks --manifest-path=bin/node/cli/Cargo.toml -- benchmark --chain=dev --steps=50 --repeat=20 --pallet=pallet_staking --extrinsic="*" --execution=wasm --wasm-execution=compiled --heap-pages=4096 --output=./frame/staking/src/weights.rs --template=./.maintain/frame-weight-template.hbs

Results
Pallet: "pallet_staking", Extrinsic: "bond", Lowest values: [], Highest values: [], Steps: 50, Repeat: 20
Median Slopes Analysis
========
-- Extrinsic Time --

Model:
Time ~=    76.85
              µs

Reads = 5
Writes = 4
Min Squares Analysis
========
-- Extrinsic Time --

Model:
Time ~=    76.85
              µs

Reads = 5
Writes = 4
Pallet: "pallet_staking", Extrinsic: "bond_extra", Lowest values: [], Highest values: [], Steps: 50, Repeat: 20
Median Slopes Analysis
========
-- Extrinsic Time --

Model:
Time ~=    146.4
              µs

Reads = 10
Writes = 9
Min Squares Analysis
========
-- Extrinsic Time --

Model:
Time ~=    146.4
              µs

Reads = 10
Writes = 9
Pallet: "pallet_staking", Extrinsic: "unbond", Lowest values: [], Highest values: [], Steps: 50, Repeat: 20
Median Slopes Analysis
========
-- Extrinsic Time --

Model:
Time ~=    158.3
              µs

Reads = 15
Writes = 10
Min Squares Analysis
========
-- Extrinsic Time --

Model:
Time ~=    158.3
              µs

Reads = 15
Writes = 10
Pallet: "pallet_staking", Extrinsic: "withdraw_unbonded_update", Lowest values: [], Highest values: [], Steps: 50, Repeat: 20
Median Slopes Analysis
========
-- Extrinsic Time --

Model:
Time ~=    53.22
    + s    0.024
              µs

Reads = 4 + (0 * s)
Writes = 3 + (0 * s)
Min Squares Analysis
========
-- Extrinsic Time --

Data points distribution:
    s   mean µs  sigma µs       %
    0        52     0.139    0.2%
    2      52.5     0.125    0.2%
    4     52.85     0.154    0.2%
    6     52.99     0.145    0.2%
    8     53.48     0.294    0.5%
   10     53.04     0.213    0.4%
   12     54.01     0.308    0.5%
   14     53.36     0.141    0.2%
   16     53.77     0.191    0.3%
   18      54.3     0.173    0.3%
   20     54.16     0.161    0.2%
   22     54.24     0.166    0.3%
   24      53.9     0.329    0.6%
   26     53.93     0.203    0.3%
   28     53.47     0.216    0.4%
   30      54.2     0.268    0.4%
   32     54.06     0.253    0.4%
   34     54.37     0.193    0.3%
   36     53.98     0.139    0.2%
   38     54.25     0.221    0.4%
   40     54.76     0.179    0.3%
   42     54.23     0.094    0.1%
   44     54.72     0.196    0.3%
   46     54.57     0.183    0.3%
   48     54.83     0.109    0.1%
   50     54.43     0.207    0.3%
   52      54.8     0.264    0.4%
   54     54.76     0.082    0.1%
   56     54.88     0.181    0.3%
   58     54.94     0.272    0.4%
   60     54.68     0.216    0.3%
   62     54.62     0.188    0.3%
   64      54.7     0.201    0.3%
   66     55.05     0.101    0.1%
   68     55.15     0.287    0.5%
   70     54.99     0.259    0.4%
   72     54.93     0.232    0.4%
   74      54.8     0.213    0.3%
   76     55.31     0.241    0.4%
   78     55.16     0.305    0.5%
   80      55.3     0.349    0.6%
   82     55.14     0.161    0.2%
   84     55.39     0.253    0.4%
   86      55.1      0.14    0.2%
   88      55.3      0.18    0.3%
   90     55.02      0.19    0.3%
   92     55.16     0.217    0.3%
   94     55.09     0.178    0.3%
   96     55.47     0.171    0.3%
   98     55.38     0.261    0.4%

Quality and confidence:
param     error
s             0

Model:
Time ~=    53.22
    + s    0.025
              µs

Reads = 4 + (0 * s)
Writes = 3 + (0 * s)
Pallet: "pallet_staking", Extrinsic: "withdraw_unbonded_kill", Lowest values: [], Highest values: [], Steps: 50, Repeat: 20
Median Slopes Analysis
========
-- Extrinsic Time --

Model:
Time ~=    88.19
    + s    2.427
              µs

Reads = 8 + (0 * s)
Writes = 6 + (1 * s)
Min Squares Analysis
========
-- Extrinsic Time --

Data points distribution:
    s   mean µs  sigma µs       %
    0     83.36     0.321    0.3%
    2      91.4     0.346    0.3%
    4      97.3     0.292    0.3%
    6     102.4     0.208    0.2%
    8     107.4     0.417    0.3%
   10     112.5     0.186    0.1%
   12     117.2     0.297    0.2%
   14     121.6     0.237    0.1%
   16     127.1     0.315    0.2%
   18     131.8     0.156    0.1%
   20     136.9     0.221    0.1%
   22     141.6     0.378    0.2%
   24     146.9     0.406    0.2%
   26       152     0.347    0.2%
   28     156.9     0.325    0.2%
   30     161.4     0.314    0.1%
   32     166.7     0.405    0.2%
   34     172.1      0.53    0.3%
   36     176.4     0.787    0.4%
   38     180.5     0.353    0.1%
   40     185.7      1.01    0.5%
   42     190.7     0.762    0.3%
   44     195.8     0.428    0.2%
   46     200.5     0.537    0.2%
   48     205.2      0.29    0.1%
   50     209.1     0.541    0.2%
   52     214.4     1.301    0.6%
   54     218.9     0.552    0.2%
   56     224.4     0.239    0.1%
   58     229.4     1.386    0.6%
   60     233.1     1.319    0.5%
   62     239.3     1.532    0.6%
   64     244.2     1.745    0.7%
   66     249.1     0.865    0.3%
   68     254.6     2.117    0.8%
   70     257.7     0.677    0.2%
   72       262     0.521    0.1%
   74     267.2     0.317    0.1%
   76     272.1     1.627    0.5%
   78     277.6     1.516    0.5%
   80     281.9      0.34    0.1%
   82     287.1     0.779    0.2%
   84     291.6     0.875    0.3%
   86     296.6     0.601    0.2%
   88     301.7     0.972    0.3%
   90     305.4     0.498    0.1%
   92     311.5      0.76    0.2%
   94     315.7     0.934    0.2%
   96       323     2.639    0.8%
   98     326.2     0.727    0.2%

Quality and confidence:
param     error
s         0.002

Model:
Time ~=    87.94
    + s    2.433
              µs

Reads = 8 + (0 * s)
Writes = 6 + (1 * s)
Pallet: "pallet_staking", Extrinsic: "validate", Lowest values: [], Highest values: [], Steps: 50, Repeat: 20
Median Slopes Analysis
========
-- Extrinsic Time --

Model:
Time ~=    72.63
              µs

Reads = 10
Writes = 6
Min Squares Analysis
========
-- Extrinsic Time --

Model:
Time ~=    72.63
              µs

Reads = 10
Writes = 6
Pallet: "pallet_staking", Extrinsic: "kick", Lowest values: [], Highest values: [], Steps: 50, Repeat: 20
Median Slopes Analysis
========
-- Extrinsic Time --

Model:
Time ~=    20.96
    + k    16.63
              µs

Reads = 1 + (1 * k)
Writes = 0 + (1 * k)
Min Squares Analysis
========
-- Extrinsic Time --

Data points distribution:
    k   mean µs  sigma µs       %
    1     39.28      0.35    0.8%
    3     73.77     0.173    0.2%
    5     105.9     0.943    0.8%
    7     139.4     0.414    0.2%
    9     169.5      0.48    0.2%
   11     202.2      0.35    0.1%
   13     235.6     0.589    0.2%
   15     267.5     0.542    0.2%
   17     302.4     1.588    0.5%
   19     333.5      1.51    0.4%
   21     368.2     1.007    0.2%
   23     401.6      2.03    0.5%
   25     435.9     1.755    0.4%
   27     469.6     1.993    0.4%
   29     500.2     2.673    0.5%
   31     539.3     7.166    1.3%
   33       569     1.023    0.1%
   35     609.7     10.62    1.7%
   37     636.9     2.921    0.4%
   39     675.1     11.44    1.6%
   41     703.6     5.047    0.7%
   43     741.1     15.04    2.0%
   45     763.3     1.776    0.2%
   47     805.6     10.44    1.2%
   49     839.6     12.34    1.4%
   51     871.6     13.33    1.5%
   53     915.4      11.5    1.2%
   55     949.5     15.08    1.5%
   57     972.5     9.158    0.9%
   59      1005     13.59    1.3%
   61      1036     6.414    0.6%
   63      1074     11.73    1.0%
   65      1119     10.97    0.9%
   67      1137     8.378    0.7%
   69      1181     12.49    1.0%
   71      1205      7.21    0.5%
   73      1245     13.85    1.1%
   75      1278      11.1    0.8%
   77      1300     7.269    0.5%
   79      1336     2.574    0.1%
   81      1376     14.31    1.0%
   83      1403     12.52    0.8%
   85      1444     14.59    1.0%
   87      1473     8.302    0.5%
   89      1505     8.048    0.5%
   91      1553      10.6    0.6%
   93      1569     9.478    0.6%
   95      1601     12.12    0.7%
   97      1635     12.63    0.7%
   99      1683     14.33    0.8%

Quality and confidence:
param     error
k         0.015

Model:
Time ~=    19.58
    + k    16.73
              µs

Reads = 1 + (1 * k)
Writes = 0 + (1 * k)
Pallet: "pallet_staking", Extrinsic: "nominate", Lowest values: [], Highest values: [], Steps: 50, Repeat: 20
Median Slopes Analysis
========
-- Extrinsic Time --

Model:
Time ~=    91.72
    + n    5.598
              µs

Reads = 12 + (1 * n)
Writes = 7 + (0 * n)
Min Squares Analysis
========
-- Extrinsic Time --

Data points distribution:
    n   mean µs  sigma µs       %
    1     94.23     0.304    0.3%
    2       103     0.176    0.1%
    3     107.9     0.247    0.2%
    4     114.5     0.288    0.2%
    5     120.3     0.276    0.2%
    6     126.2     0.309    0.2%
    7     131.5     0.298    0.2%
    8     135.5     0.205    0.1%
    9       143     0.813    0.5%
   10       148     0.504    0.3%
   11     153.4      0.46    0.2%
   12     157.3     1.179    0.7%
   13     164.4     0.305    0.1%
   14     168.7     0.941    0.5%
   15     175.8     1.371    0.7%
   16     180.3     1.436    0.7%

Quality and confidence:
param     error
n         0.021

Model:
Time ~=    91.43
    + n      5.6
              µs

Reads = 12 + (1 * n)
Writes = 7 + (0 * n)
Pallet: "pallet_staking", Extrinsic: "chill", Lowest values: [], Highest values: [], Steps: 50, Repeat: 20
Median Slopes Analysis
========
-- Extrinsic Time --

Model:
Time ~=    18.99
              µs

Reads = 3
Writes = 0
Min Squares Analysis
========
-- Extrinsic Time --

Model:
Time ~=    18.99
              µs

Reads = 3
Writes = 0
Pallet: "pallet_staking", Extrinsic: "set_payee", Lowest values: [], Highest values: [], Steps: 50, Repeat: 20
Median Slopes Analysis
========
-- Extrinsic Time --

Model:
Time ~=    13.41
              µs

Reads = 1
Writes = 1
Min Squares Analysis
========
-- Extrinsic Time --

Model:
Time ~=    13.41
              µs

Reads = 1
Writes = 1
Pallet: "pallet_staking", Extrinsic: "set_controller", Lowest values: [], Highest values: [], Steps: 50, Repeat: 20
Median Slopes Analysis
========
-- Extrinsic Time --

Model:
Time ~=     27.8
              µs

Reads = 3
Writes = 3
Min Squares Analysis
========
-- Extrinsic Time --

Model:
Time ~=     27.8
              µs

Reads = 3
Writes = 3
Pallet: "pallet_staking", Extrinsic: "set_validator_count", Lowest values: [], Highest values: [], Steps: 50, Repeat: 20
Median Slopes Analysis
========
-- Extrinsic Time --

Model:
Time ~=    2.862
              µs

Reads = 0
Writes = 1
Min Squares Analysis
========
-- Extrinsic Time --

Model:
Time ~=    2.862
              µs

Reads = 0
Writes = 1
Pallet: "pallet_staking", Extrinsic: "force_no_eras", Lowest values: [], Highest values: [], Steps: 50, Repeat: 20
Median Slopes Analysis
========
-- Extrinsic Time --

Model:
Time ~=    3.094
              µs

Reads = 0
Writes = 1
Min Squares Analysis
========
-- Extrinsic Time --

Model:
Time ~=    3.094
              µs

Reads = 0
Writes = 1
Pallet: "pallet_staking", Extrinsic: "force_new_era", Lowest values: [], Highest values: [], Steps: 50, Repeat: 20
Median Slopes Analysis
========
-- Extrinsic Time --

Model:
Time ~=    3.048
              µs

Reads = 0
Writes = 1
Min Squares Analysis
========
-- Extrinsic Time --

Model:
Time ~=    3.048
              µs

Reads = 0
Writes = 1
Pallet: "pallet_staking", Extrinsic: "force_new_era_always", Lowest values: [], Highest values: [], Steps: 50, Repeat: 20
Median Slopes Analysis
========
-- Extrinsic Time --

Model:
Time ~=    3.109
              µs

Reads = 0
Writes = 1
Min Squares Analysis
========
-- Extrinsic Time --

Model:
Time ~=    3.109
              µs

Reads = 0
Writes = 1
Pallet: "pallet_staking", Extrinsic: "set_invulnerables", Lowest values: [], Highest values: [], Steps: 50, Repeat: 20
Median Slopes Analysis
========
-- Extrinsic Time --

Model:
Time ~=    3.317
    + v    0.056
              µs

Reads = 0 + (0 * v)
Writes = 1 + (0 * v)
Min Squares Analysis
========
-- Extrinsic Time --

Data points distribution:
    v   mean µs  sigma µs       %
    0     3.014     0.029    0.9%
   20     4.453     0.016    0.3%
   40     5.714     0.036    0.6%
   60       6.8     0.031    0.4%
   80     7.954     0.038    0.4%
  100     9.069     0.034    0.3%
  120     10.19     0.039    0.3%
  140     11.27     0.038    0.3%
  160     12.39     0.042    0.3%
  180     13.52     0.032    0.2%
  200     14.69     0.055    0.3%
  220     15.82     0.063    0.3%
  240      16.9     0.036    0.2%
  260     18.07     0.056    0.3%
  280     19.14      0.03    0.1%
  300     20.22     0.057    0.2%
  320     21.34     0.039    0.1%
  340     22.48     0.042    0.1%
  360     23.57     0.043    0.1%
  380     24.74     0.034    0.1%
  400     25.81     0.054    0.2%
  420        27     0.047    0.1%
  440     28.11     0.018    0.0%
  460     29.23     0.054    0.1%
  480     30.41     0.035    0.1%
  500     31.49     0.054    0.1%
  520     32.69      0.04    0.1%
  540     33.86     0.038    0.1%
  560     34.98     0.053    0.1%
  580     36.13     0.042    0.1%
  600     37.27     0.058    0.1%
  620     38.44     0.059    0.1%
  640     39.52     0.051    0.1%
  660     40.57     0.082    0.2%
  680      41.9     0.052    0.1%
  700     42.94     0.053    0.1%
  720     44.03      0.02    0.0%
  740     45.19     0.022    0.0%
  760     46.32     0.048    0.1%
  780     47.49      0.04    0.0%
  800     48.56     0.052    0.1%
  820     49.75     0.081    0.1%
  840     50.86     0.078    0.1%
  860        52     0.072    0.1%
  880     53.14     0.063    0.1%
  900     54.17     0.075    0.1%
  920     55.33     0.067    0.1%
  940     56.54     0.052    0.0%
  960     57.77      0.06    0.1%
  980     58.91     0.081    0.1%

Quality and confidence:
param     error
v             0

Model:
Time ~=      3.3
    + v    0.057
              µs

Reads = 0 + (0 * v)
Writes = 1 + (0 * v)
Pallet: "pallet_staking", Extrinsic: "force_unstake", Lowest values: [], Highest values: [], Steps: 50, Repeat: 20
Median Slopes Analysis
========
-- Extrinsic Time --

Model:
Time ~=    64.15
    + s    2.459
              µs

Reads = 6 + (0 * s)
Writes = 6 + (1 * s)
Min Squares Analysis
========
-- Extrinsic Time --

Data points distribution:
    s   mean µs  sigma µs       %
    0     59.39     0.203    0.3%
    2     67.55     0.147    0.2%
    4     72.58     0.239    0.3%
    6     78.59     0.222    0.2%
    8        84     0.155    0.1%
   10     88.91     0.167    0.1%
   12     93.53      0.29    0.3%
   14     99.48     0.196    0.1%
   16     103.6      0.36    0.3%
   18     108.9     0.366    0.3%
   20     113.1      0.26    0.2%
   22     118.2     0.342    0.2%
   24     123.5     0.292    0.2%
   26     128.2     0.537    0.4%
   28     132.9     0.229    0.1%
   30     138.7     0.688    0.4%
   32     142.7     0.215    0.1%
   34     147.3     0.204    0.1%
   36     153.2     0.344    0.2%
   38     158.1     0.316    0.1%
   40     163.6     1.065    0.6%
   42     167.8     0.599    0.3%
   44     173.2     1.181    0.6%
   46     177.8     0.397    0.2%
   48     182.6     0.619    0.3%
   50     186.4      0.75    0.4%
   52     192.1     0.468    0.2%
   54     196.4     0.438    0.2%
   56     202.2     0.794    0.3%
   58     207.2     1.258    0.6%
   60     210.1     0.856    0.4%
   62     216.8     0.847    0.3%
   64     220.7     0.747    0.3%
   66     226.3     2.212    0.9%
   68       231     1.828    0.7%
   70     236.5     0.334    0.1%
   72     242.4     1.276    0.5%
   74     247.6       1.5    0.6%
   76     249.3      1.79    0.7%
   78     252.5     0.279    0.1%
   80     258.8     1.118    0.4%
   82     264.4     1.117    0.4%
   84     270.5     1.474    0.5%
   86     275.3     2.105    0.7%
   88     280.6     1.879    0.6%
   90       285     1.539    0.5%
   92       291     1.617    0.5%
   94     296.4     2.182    0.7%
   96     300.9     0.883    0.2%
   98     303.1      0.56    0.1%

Quality and confidence:
param     error
s         0.002

Model:
Time ~=     63.9
    + s     2.46
              µs

Reads = 6 + (0 * s)
Writes = 6 + (1 * s)
Pallet: "pallet_staking", Extrinsic: "cancel_deferred_slash", Lowest values: [], Highest values: [], Steps: 50, Repeat: 20
Median Slopes Analysis
========
-- Extrinsic Time --

Model:
Time ~=     3407
    + s    21.21
              µs

Reads = 1 + (0 * s)
Writes = 1 + (0 * s)
Min Squares Analysis
========
-- Extrinsic Time --

Data points distribution:
    s   mean µs  sigma µs       %
    1     257.5     0.239    0.0%
   20      1012     0.432    0.0%
   39      1745     8.408    0.4%
   58      2488     7.563    0.3%
   77      3177     14.91    0.4%
   96      3878     9.724    0.2%
  115      4520     13.45    0.2%
  134      5189     11.81    0.2%
  153      5838     12.54    0.2%
  172      6479      14.1    0.2%
  191      7079     10.21    0.1%
  210      7690     9.138    0.1%
  229      8276     16.07    0.1%
  248      8854     11.43    0.1%
  267      9425     20.73    0.2%
  286      9968     11.87    0.1%
  305     10490     13.33    0.1%
  324     11000     11.57    0.1%
  343     11520     12.43    0.1%
  362     11990     15.23    0.1%
  381     12460     14.59    0.1%
  400     12930     10.67    0.0%
  419     13360      18.9    0.1%
  438     13810      9.47    0.0%
  457     14210     13.83    0.0%
  476     14630     11.69    0.0%
  495     15030     24.85    0.1%
  514     15440     54.83    0.3%
  533     15740     20.21    0.1%
  552     16080     13.35    0.0%
  571     16410     22.34    0.1%
  590     16720     18.78    0.1%
  609     17040     11.12    0.0%
  628     17340     19.54    0.1%
  647     17590     16.33    0.0%
  666     17840      17.1    0.0%
  685     18080     27.47    0.1%
  704     18330     15.39    0.0%
  723     18560     22.81    0.1%
  742     18740     31.35    0.1%
  761     18920     22.89    0.1%
  780     19090     34.59    0.1%
  799     19250     14.22    0.0%
  818     19400     23.41    0.1%
  837     19520     19.01    0.0%
  856     19650     18.13    0.0%
  875     19780     31.06    0.1%
  894     19820     21.93    0.1%
  913     19910      32.7    0.1%
  932     19950     18.36    0.0%

Quality and confidence:
param     error
s         0.218

Model:
Time ~=     3064
    + s    21.15
              µs

Reads = 1 + (0 * s)
Writes = 1 + (0 * s)
Pallet: "pallet_staking", Extrinsic: "payout_stakers_dead_controller", Lowest values: [], Highest values: [], Steps: 50, Repeat: 20
Median Slopes Analysis
========
-- Extrinsic Time --

Model:
Time ~=    118.1
    + n    48.69
              µs

Reads = 10 + (3 * n)
Writes = 2 + (1 * n)
Min Squares Analysis
========
-- Extrinsic Time --

Data points distribution:
    n   mean µs  sigma µs       %
    1     166.3     0.811    0.4%
    6     413.4     1.432    0.3%
   11     653.4     1.358    0.2%
   16     906.2     5.489    0.6%
   21      1142     10.07    0.8%
   26      1384     12.61    0.9%
   31      1624     10.91    0.6%
   36      1883     8.625    0.4%
   41      2113     9.577    0.4%
   46      2340     15.97    0.6%
   51      2604     22.51    0.8%
   56      2840     6.533    0.2%
   61      3062     15.74    0.5%
   66      3312     5.845    0.1%
   71      3580     17.91    0.5%
   76      3817      13.9    0.3%
   81      4074     20.69    0.5%
   86      4338     21.02    0.4%
   91      4542     15.36    0.3%
   96      4794     15.32    0.3%
  101      5032     11.32    0.2%
  106      5261     12.11    0.2%
  111      5483     8.201    0.1%
  116      5711     19.53    0.3%
  121      5988     14.77    0.2%
  126      6219     11.53    0.1%
  131      6475      18.5    0.2%
  136      6715     18.49    0.2%
  141      6998     15.24    0.2%
  146      7266     14.74    0.2%
  151      7486        33    0.4%
  156      7713     10.24    0.1%
  161      7997     19.42    0.2%
  166      8223     11.29    0.1%
  171      8467      24.7    0.2%
  176      8715     14.42    0.1%
  181      8984     24.81    0.2%
  186      9216     20.12    0.2%
  191      9416     28.74    0.3%
  196      9697     28.01    0.2%
  201      9866     15.18    0.1%
  206     10080     26.42    0.2%
  211     10380     21.28    0.2%
  216     10630     30.45    0.2%
  221     10890     20.83    0.1%
  226     11160     26.38    0.2%
  231     11320     52.04    0.4%
  236     11620     34.27    0.2%
  241     11840     33.12    0.2%
  246     12080     26.94    0.2%

Quality and confidence:
param     error
n         0.019

Model:
Time ~=    114.3
    + n    48.72
              µs

Reads = 10 + (3 * n)
Writes = 2 + (1 * n)
Pallet: "pallet_staking", Extrinsic: "payout_stakers_alive_staked", Lowest values: [], Highest values: [], Steps: 50, Repeat: 20
Median Slopes Analysis
========
-- Extrinsic Time --

Model:
Time ~=    178.3
    + n    63.24
              µs

Reads = 11 + (5 * n)
Writes = 3 + (3 * n)
Min Squares Analysis
========
-- Extrinsic Time --

Data points distribution:
    n   mean µs  sigma µs       %
    1     248.5     6.631    2.6%
    6     556.9     1.149    0.2%
   11     875.6     4.371    0.4%
   16      1176     2.044    0.1%
   21      1513     12.65    0.8%
   26      1807     11.28    0.6%
   31      2137     17.13    0.8%
   36      2443     17.31    0.7%
   41      2744     13.94    0.5%
   46      3104     18.17    0.5%
   51      3395     14.15    0.4%
   56      3714     16.11    0.4%
   61      4019     9.127    0.2%
   66      4336     13.54    0.3%
   71      4661     21.38    0.4%
   76      4974     13.77    0.2%
   81      5269     22.05    0.4%
   86      5605      4.49    0.0%
   91      5963     10.36    0.1%
   96      6270     17.45    0.2%
  101      6584     15.17    0.2%
  106      6947     23.35    0.3%
  111      7213     11.68    0.1%
  116      7520     12.87    0.1%
  121      7868     21.03    0.2%
  126      8152     22.96    0.2%
  131      8510     24.26    0.2%
  136      8759     12.68    0.1%
  141      9127     17.92    0.1%
  146      9393     33.58    0.3%
  151      9781     36.17    0.3%
  156      9979     30.01    0.3%
  161     10350     24.38    0.2%
  166     10580     29.22    0.2%
  171     10920     16.18    0.1%
  176     11330     40.21    0.3%
  181     11670     30.54    0.2%
  186     12030     25.79    0.2%
  191     12280     34.98    0.2%
  196     12520     23.88    0.1%
  201     12840     19.33    0.1%
  206     13260     43.38    0.3%
  211     13480        34    0.2%
  216     13920     40.05    0.2%
  221     14160     42.72    0.3%
  226     14500     33.61    0.2%
  231     14790     46.42    0.3%
  236     15080     15.04    0.0%
  241     15460     20.86    0.1%
  246     15620     36.28    0.2%

Quality and confidence:
param     error
n         0.028

Model:
Time ~=    176.8
    + n    63.27
              µs

Reads = 11 + (5 * n)
Writes = 3 + (3 * n)
Pallet: "pallet_staking", Extrinsic: "rebond", Lowest values: [], Highest values: [], Steps: 50, Repeat: 20
Median Slopes Analysis
========
-- Extrinsic Time --

Model:
Time ~=    144.1
    + l    0.009
              µs

Reads = 11 + (0 * l)
Writes = 10 + (0 * l)
Min Squares Analysis
========
-- Extrinsic Time --

Data points distribution:
    l   mean µs  sigma µs       %
    1     144.6     0.965    0.6%
    2     145.7     0.376    0.2%
    3     145.2     0.395    0.2%
    4     145.1     0.308    0.2%
    5     146.1     0.206    0.1%
    6     145.3     0.423    0.2%
    7     144.9     0.309    0.2%
    8       143     0.487    0.3%
    9     143.1     0.305    0.2%
   10     143.3     0.151    0.1%
   11     143.1     0.352    0.2%
   12       144     0.527    0.3%
   13     145.1     2.338    1.6%
   14     142.5      0.66    0.4%
   15     143.7     0.271    0.1%
   16     143.6     0.437    0.3%
   17     143.2     0.249    0.1%
   18     144.4     0.322    0.2%
   19     145.1     0.373    0.2%
   20     143.4     0.384    0.2%
   21       144     0.235    0.1%
   22     144.5     0.143    0.0%
   23     144.1     0.385    0.2%
   24     144.3     0.367    0.2%
   25     144.5     0.249    0.1%
   26     144.6     0.196    0.1%
   27     144.7     0.307    0.2%
   28     144.4      0.24    0.1%
   29     145.1     0.385    0.2%
   30     145.3     0.234    0.1%
   31     144.3     0.343    0.2%
   32     144.7     0.249    0.1%

Quality and confidence:
param     error
l         0.006

Model:
Time ~=    144.4
    + l        0
              µs

Reads = 11 + (0 * l)
Writes = 10 + (0 * l)
Pallet: "pallet_staking", Extrinsic: "set_history_depth", Lowest values: [], Highest values: [], Steps: 50, Repeat: 20
Median Slopes Analysis
========
-- Extrinsic Time --

Model:
Time ~=        0
    + e    31.04
              µs

Reads = 2 + (0 * e)
Writes = 4 + (7 * e)
Min Squares Analysis
========
-- Extrinsic Time --

Data points distribution:
    e   mean µs  sigma µs       %
    1     44.37     0.161    0.3%
    2     72.74     0.257    0.3%
    3     98.89     0.238    0.2%
    4     128.7     0.174    0.1%
    5     154.7     0.304    0.1%
    6     181.9     0.309    0.1%
    7     209.2       0.3    0.1%
    8     235.8     0.277    0.1%
    9     264.5     1.159    0.4%
   10     288.3     1.044    0.3%
   11     314.5     0.552    0.1%
   12     344.3     0.706    0.2%
   13     369.2     0.429    0.1%
   14     405.2     0.936    0.2%
   15     429.9     0.659    0.1%
   16     457.8     2.996    0.6%
   17       488      0.98    0.2%
   18     515.3     1.117    0.2%
   19     548.5      1.34    0.2%
   20     579.6      1.87    0.3%
   21     610.2     1.692    0.2%
   22     638.5     1.515    0.2%
   23     672.7     2.826    0.4%
   24     703.6     2.459    0.3%
   25     735.7     2.249    0.3%
   26     774.6     2.437    0.3%
   27     810.1     4.703    0.5%
   28     842.6     2.317    0.2%
   29     864.9     2.807    0.3%
   30     910.7     3.859    0.4%
   31     938.7     2.047    0.2%
   32     945.6     8.779    0.9%
   33      1002     7.351    0.7%
   34      1040     3.679    0.3%
   35      1064     8.198    0.7%
   36      1089     7.427    0.6%
   37      1117      7.59    0.6%
   38      1160     9.472    0.8%
   39      1176     10.82    0.9%
   40      1231     3.985    0.3%
   41      1271     2.298    0.1%
   42      1299     3.935    0.3%
   43      1321     12.96    0.9%
   44      1367     13.35    0.9%
   45      1392     5.364    0.3%
   46      1426     7.828    0.5%
   47      1458     16.77    1.1%
   48      1492     11.35    0.7%
   49      1543        14    0.9%
   50      1561     14.77    0.9%

Quality and confidence:
param     error
e         0.058

Model:
Time ~=        0
    + e    31.21
              µs

Reads = 2 + (0 * e)
Writes = 4 + (7 * e)
Pallet: "pallet_staking", Extrinsic: "reap_stash", Lowest values: [], Highest values: [], Steps: 50, Repeat: 20
Median Slopes Analysis
========
-- Extrinsic Time --

Model:
Time ~=    104.7
    + s    2.433
              µs

Reads = 11 + (0 * s)
Writes = 12 + (1 * s)
Min Squares Analysis
========
-- Extrinsic Time --

Data points distribution:
    s   mean µs  sigma µs       %
    1     109.7     0.448    0.4%
    2     109.3     0.261    0.2%
    3     111.1      0.28    0.2%
    4     114.3     0.252    0.2%
    5     116.2     0.316    0.2%
    6     119.2     0.471    0.3%
    7       121     0.343    0.2%
    8     123.7     0.194    0.1%
    9     126.8     0.373    0.2%
   10     128.4     0.434    0.3%
   11     131.3      0.24    0.1%
   12     134.1     0.279    0.2%
   13     136.6     0.403    0.2%
   14     138.9     0.412    0.2%
   15     142.2     0.259    0.1%
   16     144.1     0.333    0.2%
   17     148.7     1.182    0.7%
   18     149.2     0.592    0.3%
   19     151.7     0.401    0.2%
   20     153.3     0.396    0.2%
   21     155.5       0.3    0.1%
   22     157.7     0.267    0.1%
   23     160.4     0.231    0.1%
   24     163.2     0.263    0.1%
   25       166     0.363    0.2%
   26     168.3      0.23    0.1%
   27     171.4     0.372    0.2%
   28     173.2     0.327    0.1%
   29     175.5     0.317    0.1%
   30     177.6     0.297    0.1%
   31     179.8     0.372    0.2%
   32     182.3     0.332    0.1%
   33     184.6      0.27    0.1%
   34     186.7     0.231    0.1%
   35     189.9     0.509    0.2%
   36     192.6     0.389    0.2%
   37     195.2     0.293    0.1%
   38       197     0.438    0.2%
   39       200     0.385    0.1%
   40     201.7     0.456    0.2%
   41     204.5     0.698    0.3%
   42     207.2     0.393    0.1%
   43     209.3     0.289    0.1%
   44     211.2     0.319    0.1%
   45     213.4     0.529    0.2%
   46       217      0.58    0.2%
   47     219.7     0.708    0.3%
   48     222.2     0.635    0.2%
   49     224.2     0.684    0.3%
   50     225.8     0.551    0.2%

Quality and confidence:
param     error
s         0.002

Model:
Time ~=    104.9
    + s     2.43
              µs

Reads = 11 + (0 * s)
Writes = 12 + (1 * s)
Pallet: "pallet_staking", Extrinsic: "new_era", Lowest values: [], Highest values: [], Steps: 50, Repeat: 20
Median Slopes Analysis
========
-- Extrinsic Time --

Model:
Time ~=        0
    + v    290.2
    + n    51.63
              µs

Reads = 209 + (4 * v) + (4 * n)
Writes = 4 + (3 * v) + (0 * n)
Min Squares Analysis
========
-- Extrinsic Time --

Data points distribution:
    v     n   mean µs  sigma µs       %
    1   100      3856     22.01    0.5%
    2   100      4174     14.02    0.3%
    3   100      4387     18.09    0.4%
    4   100      4571     16.86    0.3%
    5   100      4878     14.48    0.2%
    6   100      5178     10.96    0.2%
    7   100      5517     16.51    0.2%
    8   100      5752     14.01    0.2%
    9   100      6216     19.18    0.3%
   10     1      1400      10.8    0.7%
   10     2      1462     10.37    0.7%
   10     3      1507     14.41    0.9%
   10     4      1588     12.62    0.7%
   10     5      1627     12.08    0.7%
   10     6      1674     12.32    0.7%
   10     7      1729     12.43    0.7%
   10     8      1771     12.01    0.6%
   10     9      1851     11.24    0.6%
   10    10      1903     9.103    0.4%
   10    11      1965     4.568    0.2%
   10    12      2003     11.19    0.5%
   10    13      2058     8.461    0.4%
   10    14      2126     4.954    0.2%
   10    15      2145     16.78    0.7%
   10    16      2207     5.902    0.2%
   10    17      2270     12.98    0.5%
   10    18      2312      7.64    0.3%
   10    19      2362     8.792    0.3%
   10    20      2412     5.181    0.2%
   10    21      2442     11.84    0.4%
   10    22      2459      6.11    0.2%
   10    23      2584     6.373    0.2%
   10    24      2606      6.49    0.2%
   10    25      2657     5.575    0.2%
   10    26      2725     7.443    0.2%
   10    27      2796     10.67    0.3%
   10    28      2860     7.128    0.2%
   10    29      2882     8.849    0.3%
   10    30      2928     18.19    0.6%
   10    31      2966     9.064    0.3%
   10    32      3065      13.2    0.4%
   10    33      3091     9.372    0.3%
   10    34      3109     12.71    0.4%
   10    35      3204     15.79    0.4%
   10    36      3256     9.041    0.2%
   10    37      3295        11    0.3%
   10    38      3321      10.3    0.3%
   10    39      3367     9.569    0.2%
   10    40      3410     14.17    0.4%
   10    41      3492     16.96    0.4%
   10    42      3516     10.42    0.2%
   10    43      3608     9.383    0.2%
   10    44      3677     10.21    0.2%
   10    45      3707       9.9    0.2%
   10    46      3755     10.24    0.2%
   10    47      3765     11.67    0.3%
   10    48      3841      9.95    0.2%
   10    49      3885     12.41    0.3%
   10    50      4005     18.87    0.4%
   10   100      6492     22.63    0.3%

Quality and confidence:
param     error
v         1.246
n         0.082

Model:
Time ~=        0
    + v    299.1
    + n    50.65
              µs

Reads = 209 + (4 * v) + (4 * n)
Writes = 4 + (3 * v) + (0 * n)
Pallet: "pallet_staking", Extrinsic: "get_npos_voters", Lowest values: [], Highest values: [], Steps: 50, Repeat: 20
Median Slopes Analysis
========
-- Extrinsic Time --

Model:
Time ~=        0
    + v    24.67
    + n    33.08
    + s    49.79
              µs

Reads = 201 + (3 * v) + (4 * n) + (1 * s)
Writes = 0 + (0 * v) + (0 * n) + (0 * s)
Min Squares Analysis
========
-- Extrinsic Time --

Data points distribution:
    v     n     s   mean µs  sigma µs       %
  500  1000    20     43110     138.5    0.3%
  510  1000    20     44270     144.9    0.3%
  520  1000    20     43970     144.7    0.3%
  530  1000    20     44350     101.1    0.2%
  540  1000    20     44610     231.5    0.5%
  550  1000    20     44680       231    0.5%
  560  1000    20     44930     76.59    0.1%
  570  1000    20     45260       163    0.3%
  580  1000    20     44830     202.2    0.4%
  590  1000    20     45180     211.9    0.4%
  600  1000    20     45910     140.7    0.3%
  610  1000    20     46160     238.2    0.5%
  620  1000    20     46360     193.4    0.4%
  630  1000    20     46140     109.4    0.2%
  640  1000    20     46370     81.39    0.1%
  650  1000    20     46730     150.7    0.3%
  660  1000    20     47800     115.7    0.2%
  670  1000    20     47070     218.4    0.4%
  680  1000    20     47870     96.01    0.2%
  690  1000    20     48130     136.9    0.2%
  700  1000    20     48170     184.2    0.3%
  710  1000    20     48170     294.9    0.6%
  720  1000    20     48290     212.8    0.4%
  730  1000    20     49380       135    0.2%
  740  1000    20     49000       145    0.2%
  750  1000    20     49090     198.2    0.4%
  760  1000    20     49980     183.8    0.3%
  770  1000    20     50720       114    0.2%
  780  1000    20     50120     243.2    0.4%
  790  1000    20     50170     156.6    0.3%
  800  1000    20     50510     216.1    0.4%
  810  1000    20     51050     164.1    0.3%
  820  1000    20     51460     173.5    0.3%
  830  1000    20     51920     187.7    0.3%
  840  1000    20     51420     202.4    0.3%
  850  1000    20     52330     185.5    0.3%
  860  1000    20     51990     408.8    0.7%
  870  1000    20     52700     213.5    0.4%
  880  1000    20     52900     128.9    0.2%
  890  1000    20     52670     145.4    0.2%
  900  1000    20     53380     130.5    0.2%
  910  1000    20     53270     190.8    0.3%
  920  1000    20     53760     164.6    0.3%
  930  1000    20     54010     293.4    0.5%
  940  1000    20     54300     267.9    0.4%
  950  1000    20     54050     203.8    0.3%
  960  1000    20     54640     289.1    0.5%
  970  1000    20     54700     172.7    0.3%
  980  1000    20     54480     277.4    0.5%
  990  1000    20     55800       358    0.6%
 1000   500    20     38790     84.75    0.2%
 1000   510    20     39510     151.6    0.3%
 1000   520    20     40080     180.6    0.4%
 1000   530    20     39690       190    0.4%
 1000   540    20     40160     145.4    0.3%
 1000   550    20     40440     234.5    0.5%
 1000   560    20     41320     84.67    0.2%
 1000   570    20     41340     176.8    0.4%
 1000   580    20     41190     260.6    0.6%
 1000   590    20     42240     87.86    0.2%
 1000   600    20     42170     139.9    0.3%
 1000   610    20     42830     198.4    0.4%
 1000   620    20     43300     101.3    0.2%
 1000   630    20     43280     107.5    0.2%
 1000   640    20     43580     205.4    0.4%
 1000   650    20     44370     173.1    0.3%
 1000   660    20     44210     123.1    0.2%
 1000   670    20     44330       160    0.3%
 1000   680    20     44820     204.4    0.4%
 1000   690    20     45310     176.5    0.3%
 1000   700    20     45440       103    0.2%
 1000   710    20     45950     154.6    0.3%
 1000   720    20     46270     146.8    0.3%
 1000   730    20     46170     204.7    0.4%
 1000   740    20     46930     221.1    0.4%
 1000   750    20     47310     130.8    0.2%
 1000   760    20     47700     110.4    0.2%
 1000   770    20     47320     162.6    0.3%
 1000   780    20     47850     140.3    0.2%
 1000   790    20     48410     233.6    0.4%
 1000   800    20     48990     158.8    0.3%
 1000   810    20     49610       140    0.2%
 1000   820    20     49970     218.7    0.4%
 1000   830    20     49900     174.4    0.3%
 1000   840    20     50480     78.34    0.1%
 1000   850    20     50280     181.7    0.3%
 1000   860    20     51340       214    0.4%
 1000   870    20     51570       120    0.2%
 1000   880    20     51690     230.5    0.4%
 1000   890    20     51990     192.7    0.3%
 1000   900    20     51820     159.1    0.3%
 1000   910    20     52480     231.2    0.4%
 1000   920    20     52340     83.34    0.1%
 1000   930    20     53150     194.4    0.3%
 1000   940    20     52970     243.8    0.4%
 1000   950    20     53940     252.7    0.4%
 1000   960    20     53640     134.2    0.2%
 1000   970    20     54090     229.9    0.4%
 1000   980    20     54680     340.8    0.6%
 1000   990    20     56580       234    0.4%
 1000  1000     1     56100     220.3    0.3%
 1000  1000     2     55960     213.1    0.3%
 1000  1000     3     56270     192.4    0.3%
 1000  1000     4     55180     190.2    0.3%
 1000  1000     5     56170     206.9    0.3%
 1000  1000     6     55670     101.3    0.1%
 1000  1000     7     55140     215.9    0.3%
 1000  1000     8     55690     253.5    0.4%
 1000  1000     9     55360     213.1    0.3%
 1000  1000    10     55600     157.4    0.2%
 1000  1000    11     56050     365.5    0.6%
 1000  1000    12     56700     352.8    0.6%
 1000  1000    13     55670       196    0.3%
 1000  1000    14     56550     182.9    0.3%
 1000  1000    15     56710     331.7    0.5%
 1000  1000    16     56390     167.3    0.2%
 1000  1000    17     56580       201    0.3%
 1000  1000    18     56190     89.22    0.1%
 1000  1000    19     56130     297.1    0.5%
 1000  1000    20     57120     230.8    0.4%

Quality and confidence:
param     error
v         0.103
n         0.103
s         3.486

Model:
Time ~=        0
    + v    24.81
    + n    33.67
    + s        0
              µs

Reads = 201 + (3 * v) + (4 * n) + (1 * s)
Writes = 0 + (0 * v) + (0 * n) + (0 * s)
Pallet: "pallet_staking", Extrinsic: "get_npos_targets", Lowest values: [], Highest values: [], Steps: 50, Repeat: 20
Median Slopes Analysis
========
-- Extrinsic Time --

Model:
Time ~=        0
    + v    11.94
              µs

Reads = 1 + (1 * v)
Writes = 0 + (0 * v)
Min Squares Analysis
========
-- Extrinsic Time --

Data points distribution:
    v   mean µs  sigma µs       %
  500      5879     23.93    0.4%
  510      5968     25.86    0.4%
  520      6026     33.57    0.5%
  530      6142     30.15    0.4%
  540      6270     39.26    0.6%
  550      6428     73.17    1.1%
  560      6345     42.15    0.6%
  570      6577     35.82    0.5%
  580      6812     30.85    0.4%
  590      6743     30.25    0.4%
  600      6940     61.57    0.8%
  610      7016     48.62    0.6%
  620      7202     46.93    0.6%
  630      7286     29.45    0.4%
  640      7321     34.15    0.4%
  650      7542      55.9    0.7%
  660      7543     29.02    0.3%
  670      7697     52.84    0.6%
  680      7845     44.24    0.5%
  690      7932     52.04    0.6%
  700      8144      37.5    0.4%
  710      8016     51.89    0.6%
  720      8370     33.87    0.4%
  730      8445     67.04    0.7%
  740      8448     44.91    0.5%
  750      8812     76.49    0.8%
  760      8890      42.5    0.4%
  770      8929     72.76    0.8%
  780      9185     40.56    0.4%
  790      9268     33.14    0.3%
  800      9237     48.67    0.5%
  810      9418     60.32    0.6%
  820      9655     45.66    0.4%
  830      9751     83.19    0.8%
  840     10000     79.52    0.7%
  850      9889     15.46    0.1%
  860     10150     36.65    0.3%
  870     10040     76.06    0.7%
  880     10270      58.8    0.5%
  890     10390     67.57    0.6%
  900     10600     59.33    0.5%
  910     10630     70.65    0.6%
  920     10560        72    0.6%
  930     10690     48.67    0.4%
  940     11190     89.38    0.7%
  950     11220     49.82    0.4%
  960     11320      79.8    0.7%
  970     11190     80.35    0.7%
  980     11630     81.04    0.6%
  990     11680     68.97    0.5%

Quality and confidence:
param     error
v         0.035

Model:
Time ~=        0
    + v    11.96
              µs

Reads = 1 + (1 * v)
Writes = 0 + (0 * v)
Pallet: "pallet_staking", Extrinsic: "set_staking_limits", Lowest values: [], Highest values: [], Steps: 50, Repeat: 20
Median Slopes Analysis
========
-- Extrinsic Time --

Model:
Time ~=     7.08
              µs

Reads = 0
Writes = 5
Min Squares Analysis
========
-- Extrinsic Time --

Model:
Time ~=     7.08
              µs

Reads = 0
Writes = 5
Pallet: "pallet_staking", Extrinsic: "chill_other", Lowest values: [], Highest values: [], Steps: 50, Repeat: 20
Median Slopes Analysis
========
-- Extrinsic Time --

Model:
Time ~=    93.71
              µs

Reads = 11
Writes = 6
Min Squares Analysis
========
-- Extrinsic Time --

Model:
Time ~=    93.71
              µs

Reads = 11
Writes = 6
Pallet: "pallet_staking", Extrinsic: "rebag", Lowest values: [], Highest values: [], Steps: 50, Repeat: 20
Median Slopes Analysis
========
-- Extrinsic Time --

Model:
Time ~=    109.5
              µs

Reads = 9
Writes = 7
Min Squares Analysis
========
-- Extrinsic Time --

Model:
Time ~=    109.5
              µs

Reads = 9
Writes = 7
Pallet: "pallet_staking", Extrinsic: "regenerate", Lowest values: [], Highest values: [], Steps: 50, Repeat: 20
Median Slopes Analysis
========
-- Extrinsic Time --

Model:
Time ~=        0
    + v    42.63
    + n    44.22
              µs

Reads = 2 + (3 * v) + (3 * n)
Writes = 2 + (2 * v) + (2 * n)
Min Squares Analysis
========
-- Extrinsic Time --

Data points distribution:
    v     n   mean µs  sigma µs       %
  500  1000     62470       242    0.3%
  510  1000     62600     121.7    0.1%
  520  1000     62910     151.4    0.2%
  530  1000     62630     115.6    0.1%
  540  1000     63460     201.6    0.3%
  550  1000     64700     124.7    0.1%
  560  1000     65360     227.8    0.3%
  570  1000     64750     105.5    0.1%
  580  1000     65260     127.8    0.1%
  590  1000     65810     197.4    0.2%
  600  1000     67310     174.9    0.2%
  610  1000     67540     171.6    0.2%
  620  1000     67090       227    0.3%
  630  1000     68090     190.9    0.2%
  640  1000     68260     150.5    0.2%
  650  1000     67910     303.3    0.4%
  660  1000     69290     162.3    0.2%
  670  1000     69810     133.2    0.1%
  680  1000     70150     258.3    0.3%
  690  1000     70340     146.5    0.2%
  700  1000     70500     164.7    0.2%
  710  1000     71430     184.5    0.2%
  720  1000     70740     183.9    0.2%
  730  1000     71410     238.5    0.3%
  740  1000     72220     165.5    0.2%
  750  1000     72520     89.66    0.1%
  760  1000     72820     206.7    0.2%
  770  1000     73670       142    0.1%
  780  1000     74430     231.7    0.3%
  790  1000     74560     212.5    0.2%
  800  1000     74960       285    0.3%
  810  1000     74900     159.2    0.2%
  820  1000     75600     289.9    0.3%
  830  1000     75560     104.8    0.1%
  840  1000     76480     581.7    0.7%
  850  1000     76050     328.3    0.4%
  860  1000     78270     246.7    0.3%
  870  1000     78150     351.3    0.4%
  880  1000     78290     396.1    0.5%
  890  1000     78920     292.5    0.3%
  900  1000     79870     163.5    0.2%
  910  1000     80110     159.9    0.1%
  920  1000     79680     347.9    0.4%
  930  1000     80080     286.6    0.3%
  940  1000     80420     229.6    0.2%
  950  1000     81980     242.5    0.2%
  960  1000     80940     149.1    0.1%
  970  1000     82210     151.3    0.1%
  980  1000     82770     277.8    0.3%
  990  1000     84160     195.5    0.2%
 1000   500     60500     156.7    0.2%
 1000   510     61440     138.8    0.2%
 1000   520     61900     142.9    0.2%
 1000   530     62790     94.11    0.1%
 1000   540     62370     157.2    0.2%
 1000   550     62970     108.3    0.1%
 1000   560     64310     218.6    0.3%
 1000   570     64470     171.3    0.2%
 1000   580     64560     165.6    0.2%
 1000   590     65390     260.3    0.3%
 1000   600     64910     281.2    0.4%
 1000   610     65360       128    0.1%
 1000   620     66700     211.6    0.3%
 1000   630     67530     90.19    0.1%
 1000   640     67800     128.2    0.1%
 1000   650     67630       187    0.2%
 1000   660     67720     254.1    0.3%
 1000   670     68940     213.5    0.3%
 1000   680     69560     196.9    0.2%
 1000   690     68880     222.4    0.3%
 1000   700     69870     235.7    0.3%
 1000   710     70890     212.2    0.2%
 1000   720     70800     186.2    0.2%
 1000   730     70720     146.5    0.2%
 1000   740     71880       182    0.2%
 1000   750     72190     184.1    0.2%
 1000   760     72860     117.7    0.1%
 1000   770     72880     304.1    0.4%
 1000   780     72970     175.1    0.2%
 1000   790     74020     121.1    0.1%
 1000   800     74160     183.9    0.2%
 1000   810     74760     187.2    0.2%
 1000   820     74680     263.2    0.3%
 1000   830     75780       105    0.1%
 1000   840     76480       291    0.3%
 1000   850     77070     212.1    0.2%
 1000   860     77050     182.1    0.2%
 1000   870     76940     165.6    0.2%
 1000   880     77870     476.9    0.6%
 1000   890     78800     213.7    0.2%
 1000   900     79000     193.4    0.2%
 1000   910     78950     165.3    0.2%
 1000   920     80170     329.6    0.4%
 1000   930     79690     210.2    0.2%
 1000   940     80100     327.3    0.4%
 1000   950     80450     141.7    0.1%
 1000   960     80830     232.7    0.2%
 1000   970     81820     184.1    0.2%
 1000   980     83420     257.6    0.3%
 1000   990     83220       249    0.2%

Quality and confidence:
param     error
v         0.123
n         0.123

Model:
Time ~=        0
    + v     42.3
    + n     44.7
              µs

Reads = 2 + (3 * v) + (3 * n)
Writes = 2 + (2 * v) + (2 * n)

…path=bin/node/cli/Cargo.toml -- benchmark --chain=dev --steps=50 --repeat=20 --pallet=pallet_staking --extrinsic=* --execution=wasm --wasm-execution=compiled --heap-pages=4096 --output=./frame/staking/src/weights.rs --template=./.maintain/frame-weight-template.hbs
.saturating_add(T::DbWeight::get().reads(5 as Weight))
.saturating_add(T::DbWeight::get().writes(4 as Weight))
}
// Storage: Staking Bonded (r:1 w:0)
// Storage: Staking Ledger (r:1 w:1)
// Storage: Staking VoterNodes (r:4 w:4)
// Storage: Staking VoterBagFor (r:1 w:1)
Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

thinking aloud - maybe we can eliminate this read if we store the current bag of the voter in the node

Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

yes let's merge them.

Copy link
Contributor Author

@emostov emostov Aug 1, 2021

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

sounds good - just to state the obvious, this will add a u64 (8 bytes) to each node. Storage space wise this should be less than the map since we don't need to store the key (accountId), but I think it means each node will take longer to encode/decode

// Storage: Staking Ledger (r:1 w:0)
// Storage: Staking Bonded (r:1 w:0)
// Storage: Staking VoterBagFor (r:1 w:1)
// Storage: Staking VoterBags (r:2 w:2)
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

why are we touching two voter bags here? is it because the worse case is to assume that the person being rebagged is the head? in that case it makes sense.

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I think its because we always do bag.put() on the destination bag as well as the source bag. Maybe remove_node could return bool indicating if the head or tail of the bag was updated. If it is updated then we can do bag.put, otherwise we can skip the write. Regardless though, we need the 2 reads (unless we modify the nodes to know if they are a head or a tail)

			// clear the old bag head/tail pointers as necessary
			if let Some(mut bag) = Bag::<T>::get(node.bag_upper) {
				bag.remove_node(&node);
				bag.put();
			} else {
				debug_assert!(false, "every node must have an extant bag associated with it");
				crate::log!(
					error,
					"Node for staker {:?} did not have a bag; VoterBags is in an inconsistent state",
					node.voter.id,
				);
			}

			// put the voter into the appropriate new bag
			let new_idx = notional_bag_for::<T>(weight_of(&node.voter.id));
			node.bag_upper = new_idx;
			let mut bag = Bag::<T>::get_or_make(node.bag_upper);
			bag.insert_node(node);
			bag.put();

Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

indeed, we can totally prevent read/write to bags. If you rebag from non-head-tail to non-head-tail, which is arguably the majority of the cases, you do not need to touch any Bag.

Not important to get done now or here, but would be great if you put a TODO in the code for it.

Copy link
Contributor Author

@emostov emostov Aug 1, 2021

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

If you rebag from non-head-tail to non-head-tail, which is arguably the majority of the cases, you do not need to touch any Bag.

I think the insert still needs a read of the bag unless we know ahead of the time the two nodes we are inserting in between.

Also, in the current state we always insert a node as the tail

@emostov
Copy link
Contributor Author

emostov commented Aug 1, 2021

Since #9373 was merged we can now get the storage read/write data in master, so this is no longer neccesary

@emostov emostov closed this Aug 1, 2021
Sign up for free to subscribe to this conversation on GitHub. Already have an account? Sign in.
Labels
None yet
Projects
None yet
Development

Successfully merging this pull request may close these issues.

4 participants