-
-
Notifications
You must be signed in to change notification settings - Fork 18.3k
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
ENH: better dtype inference when doing DataFrame reductions #52788
Changes from all commits
1e7e563
6397977
0e797b9
b846e70
76ce594
7644598
51da9ef
8d925cd
d7d1989
54bcb60
03b8ce4
e0af36f
64d8d60
a95e5b9
e7a75e4
2e64191
b6c1dc8
32f9a73
8bf7ba8
35b07c5
6a390d4
8dc2acf
5a65c70
9cb34ec
8521f18
82cd91e
e0bc63e
7cf26ae
6330840
efae9dc
b585f3b
52763ab
d4f2a84
7bfe3fe
f48ea09
bbd8cb8
c6e9a80
5200896
26d4059
b6bd75e
44dcdce
3ebcbff
99d034e
79df9db
d01fc1d
bc582f6
a7fd1b1
1781d30
68fd316
8ceb57d
4375cb2
f7b354c
f91c6ca
9a881fa
9d50f85
026696f
f603de0
a7e69ad
772998f
b20a289
082ddd9
8032514
3a3ec95
77992f7
23f22fb
3b8d8f0
1e39b65
1ed3e2d
467073a
dd0bfe8
49334c7
5634106
f85deab
6519712
74410f6
e7503dc
24e2d11
e3afa18
899a2fb
File filter
Filter by extension
Conversations
Jump to
Diff view
Diff view
There are no files selected for viewing
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -32,6 +32,10 @@ | |
Shape, | ||
npt, | ||
) | ||
from pandas.compat import ( | ||
IS64, | ||
is_platform_windows, | ||
) | ||
from pandas.errors import AbstractMethodError | ||
from pandas.util._decorators import doc | ||
from pandas.util._validators import validate_fillna_kwargs | ||
|
@@ -1081,21 +1085,31 @@ def _quantile( | |
# ------------------------------------------------------------------ | ||
# Reductions | ||
|
||
def _reduce(self, name: str, *, skipna: bool = True, **kwargs): | ||
def _reduce( | ||
self, name: str, *, skipna: bool = True, keepdims: bool = False, **kwargs | ||
): | ||
if name in {"any", "all", "min", "max", "sum", "prod", "mean", "var", "std"}: | ||
return getattr(self, name)(skipna=skipna, **kwargs) | ||
|
||
data = self._data | ||
mask = self._mask | ||
|
||
# median, skew, kurt, sem | ||
op = getattr(nanops, f"nan{name}") | ||
result = op(data, axis=0, skipna=skipna, mask=mask, **kwargs) | ||
result = getattr(self, name)(skipna=skipna, **kwargs) | ||
else: | ||
# median, skew, kurt, sem | ||
data = self._data | ||
mask = self._mask | ||
op = getattr(nanops, f"nan{name}") | ||
axis = kwargs.pop("axis", None) | ||
result = op(data, axis=axis, skipna=skipna, mask=mask, **kwargs) | ||
|
||
if keepdims: | ||
if isna(result): | ||
return self._wrap_na_result(name=name, axis=0, mask_size=(1,)) | ||
else: | ||
result = result.reshape(1) | ||
mask = np.zeros(1, dtype=bool) | ||
return self._maybe_mask_result(result, mask) | ||
|
||
if np.isnan(result): | ||
if isna(result): | ||
return libmissing.NA | ||
|
||
return result | ||
else: | ||
return result | ||
|
||
def _wrap_reduction_result(self, name: str, result, *, skipna, axis): | ||
if isinstance(result, np.ndarray): | ||
|
@@ -1108,6 +1122,32 @@ def _wrap_reduction_result(self, name: str, result, *, skipna, axis): | |
return self._maybe_mask_result(result, mask) | ||
return result | ||
|
||
def _wrap_na_result(self, *, name, axis, mask_size): | ||
mask = np.ones(mask_size, dtype=bool) | ||
|
||
float_dtyp = "float32" if self.dtype == "Float32" else "float64" | ||
if name in ["mean", "median", "var", "std", "skew"]: | ||
np_dtype = float_dtyp | ||
elif name in ["min", "max"] or self.dtype.itemsize == 8: | ||
np_dtype = self.dtype.numpy_dtype.name | ||
else: | ||
is_windows_or_32bit = is_platform_windows() or not IS64 | ||
int_dtyp = "int32" if is_windows_or_32bit else "int64" | ||
uint_dtyp = "uint32" if is_windows_or_32bit else "uint64" | ||
np_dtype = {"b": int_dtyp, "i": int_dtyp, "u": uint_dtyp, "f": float_dtyp}[ | ||
self.dtype.kind | ||
] | ||
|
||
value = np.array([1], dtype=np_dtype) | ||
return self._maybe_mask_result(value, mask=mask) | ||
|
||
def _wrap_min_count_reduction_result( | ||
self, name: str, result, *, skipna, min_count, axis | ||
): | ||
if min_count == 0 and isinstance(result, np.ndarray): | ||
return self._maybe_mask_result(result, np.zeros(result.shape, dtype=bool)) | ||
return self._wrap_reduction_result(name, result, skipna=skipna, axis=axis) | ||
|
||
def sum( | ||
self, | ||
*, | ||
|
@@ -1125,7 +1165,9 @@ def sum( | |
min_count=min_count, | ||
axis=axis, | ||
) | ||
return self._wrap_reduction_result("sum", result, skipna=skipna, axis=axis) | ||
return self._wrap_min_count_reduction_result( | ||
"sum", result, skipna=skipna, min_count=min_count, axis=axis | ||
) | ||
|
||
def prod( | ||
self, | ||
|
@@ -1136,14 +1178,17 @@ def prod( | |
**kwargs, | ||
): | ||
nv.validate_prod((), kwargs) | ||
|
||
result = masked_reductions.prod( | ||
self._data, | ||
self._mask, | ||
skipna=skipna, | ||
min_count=min_count, | ||
axis=axis, | ||
) | ||
return self._wrap_reduction_result("prod", result, skipna=skipna, axis=axis) | ||
return self._wrap_min_count_reduction_result( | ||
"prod", result, skipna=skipna, min_count=min_count, axis=axis | ||
) | ||
|
||
def mean(self, *, skipna: bool = True, axis: AxisInt | None = 0, **kwargs): | ||
nv.validate_mean((), kwargs) | ||
|
@@ -1183,23 +1228,25 @@ def std( | |
|
||
def min(self, *, skipna: bool = True, axis: AxisInt | None = 0, **kwargs): | ||
nv.validate_min((), kwargs) | ||
return masked_reductions.min( | ||
result = masked_reductions.min( | ||
self._data, | ||
self._mask, | ||
skipna=skipna, | ||
axis=axis, | ||
) | ||
return self._wrap_reduction_result("min", result, skipna=skipna, axis=axis) | ||
|
||
def max(self, *, skipna: bool = True, axis: AxisInt | None = 0, **kwargs): | ||
nv.validate_max((), kwargs) | ||
return masked_reductions.max( | ||
result = masked_reductions.max( | ||
self._data, | ||
self._mask, | ||
skipna=skipna, | ||
axis=axis, | ||
) | ||
return self._wrap_reduction_result("max", result, skipna=skipna, axis=axis) | ||
|
||
def any(self, *, skipna: bool = True, **kwargs): | ||
def any(self, *, skipna: bool = True, axis: AxisInt | None = 0, **kwargs): | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Is it needed to add the There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. I'll look into it, could be connected to your previous comment. There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. I think this works, and I've made another version, will if it passes, and then I'll look into your other comments |
||
""" | ||
Return whether any element is truthy. | ||
|
||
|
@@ -1218,6 +1265,7 @@ def any(self, *, skipna: bool = True, **kwargs): | |
If `skipna` is False, the result will still be True if there is | ||
at least one element that is truthy, otherwise NA will be returned | ||
if there are NA's present. | ||
axis : int, optional, default 0 | ||
**kwargs : any, default None | ||
Additional keywords have no effect but might be accepted for | ||
compatibility with NumPy. | ||
|
@@ -1261,7 +1309,6 @@ def any(self, *, skipna: bool = True, **kwargs): | |
>>> pd.array([0, 0, pd.NA]).any(skipna=False) | ||
<NA> | ||
""" | ||
kwargs.pop("axis", None) | ||
nv.validate_any((), kwargs) | ||
|
||
values = self._data.copy() | ||
|
@@ -1280,7 +1327,7 @@ def any(self, *, skipna: bool = True, **kwargs): | |
else: | ||
return self.dtype.na_value | ||
|
||
def all(self, *, skipna: bool = True, **kwargs): | ||
def all(self, *, skipna: bool = True, axis: AxisInt | None = 0, **kwargs): | ||
""" | ||
Return whether all elements are truthy. | ||
|
||
|
@@ -1299,6 +1346,7 @@ def all(self, *, skipna: bool = True, **kwargs): | |
If `skipna` is False, the result will still be False if there is | ||
at least one element that is falsey, otherwise NA will be returned | ||
if there are NA's present. | ||
axis : int, optional, default 0 | ||
**kwargs : any, default None | ||
Additional keywords have no effect but might be accepted for | ||
compatibility with NumPy. | ||
|
@@ -1342,7 +1390,6 @@ def all(self, *, skipna: bool = True, **kwargs): | |
>>> pd.array([1, 0, pd.NA]).all(skipna=False) | ||
False | ||
""" | ||
kwargs.pop("axis", None) | ||
nv.validate_all((), kwargs) | ||
|
||
values = self._data.copy() | ||
|
@@ -1352,7 +1399,7 @@ def all(self, *, skipna: bool = True, **kwargs): | |
# bool, int, float, complex, str, bytes, | ||
# _NestedSequence[Union[bool, int, float, complex, str, bytes]]]" | ||
np.putmask(values, self._mask, self._truthy_value) # type: ignore[arg-type] | ||
result = values.all() | ||
result = values.all(axis=axis) | ||
|
||
if skipna: | ||
return result | ||
|
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Note that now you are using
subset
again on this line, passing thisaxis
is not doing anything (and would actually raise an error if you would passaxis=1
here)(it doesn't really matter in practice because we never call this with an axis=1, but seeing
axis
passed through might give the false impression that this algo actually supports 2D data, while that is not the case)There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
@topper-123 can you address this?
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Oh, I thought I had answered this, apparently not...
func
here is eithernp.min
ornp.max
, so supplyingaxis=axis
will not raise here, but will work as expected AFAIKS.Additionally, without the
axis=axis
part,func(subset)
is similar tonp.max|min(subset, axis=None)
. Not a problem for 1d arrays, but will be a problem if we ever want to supportdf.min(axis=None)
using 2d masked arrays. (I'm not sure we want to support 2d masked arrays or are going all in on arrow?)