Skip to content

pam-ji/pjHub

Repository files navigation

PjHub

Core Features

Hybrid Infrastructure: Combination of on-premises (MinIO, PostgreSQL) and AWS emulation via LocalStack ML Pipeline: End-to-end training and hosting of PyTorch models

Two Main Applications:

  • HTML Generator: ML-powered code generation with React frontend
  • SlAI The Spire: Game AI with decision-making model

Tech Stack

Backend Services

  • GraphQL API with TypeScript & Apollo Server
  • PostgreSQL 16 for persistent storage
  • Redis 7 for caching and session management
  • MinIO S3-compatible object storage
  • LocalStack for AWS service emulation
  • Elasticsearch 8.11 for logging and search
  • PyTorch for ML model training and inference

Frontend

  • React 18 with TypeScript
  • Tailwind CSS for styling
  • Apollo Client for GraphQL integration
  • Vite for build tooling
  • React Router for navigation

Infrastructure & Monitoring

  • Traefik 2.4 for reverse proxy and load balancing
  • Grafana/Prometheus for metrics and monitoring
  • OpenTelemetry for distributed tracing
  • Keycloak for authentication and authorization
  • ModSecurity WAF for security
  • ArgoCD for GitOps deployments
  • Terraform for infrastructure provisioning

Container Services

The project uses the following containers:

Core Services

  • htmlgen-frontend: HTML Generator React frontend
  • htmlgen-api: HTML Generator GraphQL API
  • slaithespire-ml: ML model training service
  • slaithespire-api: Game AI API service
  • graphql-api: Main GraphQL API gateway

Data Storage

  • postgres: PostgreSQL database (v16)
  • redis: Redis cache server
  • minio: MinIO object storage
  • elasticsearch: Elasticsearch server

Infrastructure

  • traefik: Traefik reverse proxy
  • grafana: Metrics visualization
  • prometheus: Metrics collection
  • localstack: AWS services emulation
  • keycloak: Authentication server

Development Tools

  • argocd: GitOps deployment tool
  • vault: Secrets management

Development Setup

Getting Started

  1. Clone the repository
  2. Install dependencies:
# Frontend dependencies
cd frontend && npm install
cd ../apps/html_generator && npm install

# Backend dependencies
cd ../../backend/graphql && npm install
  1. Start services:
docker-compose -f docker/docker-compose.yml up

Available Workflows

  • Terraform Deploy: Deploy infrastructure components
  • Generate Docs: Generate architecture documentation
  • Train Model: Execute ML model training
  • ArgoCD Deploy: Deploy with ArgoCD
  • AWS Deploy: Deploy AWS resources

Development Commands

# Build HTML Generator
./scripts/build_htmlgen.sh

# Build SlAI The Spire
./scripts/build_slaithespire.sh

Project Structure

PjHub
├── .github/                    # GitHub Actions workflows
├── apps/                       # Main applications
│   ├── html_generator/         # HTML generation app
│   │   ├── public/            # Static assets
│   │   └── src/               # Source code
│   └── slay-the-spire/        # Game AI project
│       └── src/               # Source code & ML models
├── backend/                    # Backend services
│   └── graphql/               # GraphQL API
│       ├── config/            # Service configurations
│       └── schema/            # GraphQL schema definitions
├── docs/                       # Documentation
│   ├── api.md                 # API documentation
│   ├── architecture.md        # System architecture
│   └── ml.md                  # ML components docs
├── frontend/                   # Main frontend app
│   ├── public/                # Static assets
│   └── src/                   # Source code
├──                     # Infrastructure configs
│   ├── docker/                # Container configurations
│   ├── grafana/               # Monitoring & dashboards
│   ├── postgres/              # Database configs
│   └── redis/                 # Cache configs
├── IaC/                       # Infrastructure as Code
│   ├── ansible/               # Configuration management
│   │   └── argocd/           # ArgoCD configurations
│   └── terraform/             # Infrastructure specs
│       └── modules/           # Terraform modules
├── scripts/                   # Utility scripts
└── tests/                     # Test suites

Monitoring

Access Grafana dashboards at http://0.0.0.0:3000 for:

  • System metrics
  • Service health
  • Application performance
  • Infrastructure status

Local Development

Start the development environment:

docker-compose -f docker/docker-compose.yml up

Admin Dashboard

Access the admin interface at /admin for:

  • System monitoring
  • Cache management
  • ML model training controls
  • Infrastructure metrics

Applications

HTML Generator

A React/TypeScript-based frontend for HTML code generation featuring:

  • Interactive UI with drag-and-drop components
  • GraphQL API integration
  • PostgreSQL storage with Redis caching
  • ML-powered code generation model

SlAI The Spire

A PyTorch-based game AI implementation including:

  • Game state analysis and decision making
  • User data storage in PostgreSQL
  • State caching with Redis
  • ML model storage using MinIO

Architecture Diagram

flowchart TD
    %% Infrastructure Diagram
    classDef storage fill:#FF9999,color:#000000,stroke:#FF6666
    classDef compute fill:#99FF99,color:#000000,stroke:#66CC66
    classDef security fill:#9999FF,color:#000000,stroke:#6666CC
    classDef monitoring fill:#FFFF99,color:#000000,stroke:#CCCC66
    classDef cd fill:#FF99FF,color:#000000,stroke:#FF66FF

    %% Frontend Layer
    subgraph Frontend["Frontend Applications"]
        F[React Frontend]:::compute
        AB[HTML Generator]:::compute
        AC[SlAI The Spire]:::compute
    end

    %% API Layer
    subgraph API["API Layer"]
        E[Traefik]:::compute --> D[GraphQL API]:::compute
        E --> F
        D --> AB
        D --> AC
    end

    %% Data Layer
    subgraph Data["Data Services"]
        B[PostgreSQL]:::storage
        C[Redis]:::compute
        A[MinIO]:::storage
        ES[Elasticsearch]:::storage
        D --> B
        D --> C
        D --> A
        D --> ES
    end

    %% ML Services
    subgraph ML["ML Services"]
        H[ML Training]:::compute
        AD[PyTorch Model]:::compute
        H --> AD
        AD --> B
        AD --> A
    end

    %% Monitoring
    subgraph Monitoring["Monitoring Stack"]
        J[Grafana]:::monitoring
        P[Prometheus]:::monitoring
        I[Elastic SIEM]:::monitoring
        J --> P
        P --> D
        I --> ES
    end

    %% Security
    subgraph Security["Security Components"]
        R[Keycloak]:::security
        V[ModSecurity]:::security
        R --> D
        V --> E
    end

    %% CI/CD
    subgraph CD["CI/CD Pipeline"]
        X[GitHub Actions]:::cd
        Y[ArgoCD]:::cd
        X --> Y
        Y --> E
    end

    %% Styling
    classDef storage fill:#FF9999,color:#000000,stroke:#FF6666
    classDef compute fill:#99FF99,color:#000000,stroke:#66CC66
    classDef security fill:#9999FF,color:#000000,stroke:#6666CC
    classDef monitoring fill:#FFFF99,color:#000000,stroke:#CCCC66
    classDef cd fill:#FF99FF,color:#000000,stroke:#FF66FF
Loading

About

No description, website, or topics provided.

Resources

Security policy

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published