-
Notifications
You must be signed in to change notification settings - Fork 134
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Update book example for GenericCharacterTables
This syncs it with the revised version in the book repo
- Loading branch information
Showing
2 changed files
with
52 additions
and
49 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,5 +1,5 @@ | ||
import Pkg | ||
Pkg.add(name="GenericCharacterTables", version="0.2"; io=devnull) | ||
Pkg.add(name="GenericCharacterTables", version="0.4"; io=devnull) | ||
using GenericCharacterTables | ||
# for nicer printing | ||
using GenericCharacterTables: ParameterException |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,63 +1,66 @@ | ||
julia> T = genchartab("SL3.n1") | ||
Generic character table | ||
julia> T = generic_character_table("SL3.n1") | ||
Generic character table SL3.n1 | ||
of order q^8 - q^6 - q^5 + q^3 | ||
with 8 irreducible character types | ||
with 8 class types | ||
with parameters (a, b, m, n) | ||
|
||
julia> printval(T,char=4,class=4) | ||
Value of character type 4 on class type | ||
4: (q + 1) * exp(2π𝑖(1//(q - 1)*a*n)) + (1) * exp(2π𝑖(-2//(q - 1)*a*n)) | ||
|
||
julia> h = tensor!(T,2,2) | ||
9 | ||
|
||
julia> scalar(T,4,h) | ||
(0, Set(ParameterException{QQPolyRingElem}[(2*n1)//(q - 1) ∈ ℤ])) | ||
|
||
julia> print_decomposition(T, h) | ||
Decomposing character 9: | ||
<1,9> = 1 | ||
<2,9> = 2 | ||
<3,9> = 2 | ||
<4,9> = 0 with possible exceptions: | ||
(2*n1)//(q - 1) ∈ ℤ | ||
<5,9> = 0 with possible exceptions: | ||
(2*n1)//(q - 1) ∈ ℤ | ||
<6,9> = 0 with possible exceptions: | ||
(m1 + n1)//(q - 1) ∈ ℤ | ||
(2*m1 - n1)//(q - 1) ∈ ℤ | ||
(m1)//(q - 1) ∈ ℤ | ||
(n1)//(q - 1) ∈ ℤ | ||
(m1 - n1)//(q - 1) ∈ ℤ | ||
(m1 - 2*n1)//(q - 1) ∈ ℤ | ||
<7,9> = 0 with possible exceptions: | ||
(n1)//(q - 1) ∈ ℤ | ||
<8,9> = 0 with possible exceptions: | ||
((q + 1)*n1)//(q^2 + q + 1) ∈ ℤ | ||
(q*n1)//(q^2 + q + 1) ∈ ℤ | ||
(n1)//(q^2 + q + 1) ∈ ℤ | ||
julia> chardeg(T, lincomb!(T,[1,2,2],[1,2,3])) | ||
julia> T[4,4] | ||
(q + 1)*exp(2π𝑖((a*n)//(q - 1))) + exp(2π𝑖((-2*a*n)//(q - 1))) | ||
|
||
julia> h = T[2] * T[2] | ||
|
||
julia> scalar_product(T[4], h) | ||
0 | ||
With exceptions: | ||
2*n1 ∈ (q - 1)ℤ | ||
|
||
julia> for i in 1:8 println("<$i, h> = ", scalar_product(T[i], h)) end | ||
<1, h> = 1 | ||
<2, h> = 2 | ||
<3, h> = 2 | ||
<4, h> = 0 | ||
With exceptions: | ||
2*n1 ∈ (q - 1)ℤ | ||
<5, h> = 0 | ||
With exceptions: | ||
2*n1 ∈ (q - 1)ℤ | ||
<6, h> = 0 | ||
With exceptions: | ||
2*m1 - n1 ∈ (q - 1)ℤ | ||
m1 - 2*n1 ∈ (q - 1)ℤ | ||
m1 + n1 ∈ (q - 1)ℤ | ||
m1 ∈ (q - 1)ℤ | ||
m1 - n1 ∈ (q - 1)ℤ | ||
n1 ∈ (q - 1)ℤ | ||
<7, h> = 0 | ||
With exceptions: | ||
n1 ∈ (q - 1)ℤ | ||
<8, h> = 0 | ||
With exceptions: | ||
q*n1 ∈ (q^2 + q + 1)ℤ | ||
n1 ∈ (q^2 + q + 1)ℤ | ||
q*n1 + n1 ∈ (q^2 + q + 1)ℤ | ||
|
||
julia> degree(linear_combination([1,2,2],[T[1],T[2],T[3]])) | ||
2*q^3 + 2*q^2 + 2*q + 1 | ||
|
||
julia> chardeg(T, h) | ||
julia> degree(h) | ||
q^4 + 2*q^3 + q^2 | ||
|
||
julia> printcharparam(T,4) | ||
4 n ∈ {1,…, q - 1} except (n)//(q - 1) ∈ ℤ | ||
julia> parameters(T[4]) | ||
n ∈ {1,…, q - 1} except n ∈ (q - 1)ℤ | ||
|
||
julia> T2 = setcongruence(T, (0,2)); | ||
julia> T2 = set_congruence(T; remainder=0, modulus=2); | ||
|
||
julia> (q, (a, b, m, n)) = params(T2); | ||
julia> (q, (a, b, m, n)) = parameters(T2); | ||
|
||
julia> x = param(T2, "x"); # create an additional "free" variable | ||
julia> x = parameter(T2, "x"); # create an additional "free" variable | ||
|
||
julia> speccharparam!(T2, 6, m, -n + (q-1)*x) # force m = -n (mod q-1) | ||
julia> s = specialize(T2[6], m, -n + (q-1)*x); # force m = -n (mod q-1) | ||
|
||
julia> s, e = scalar(T2,6,h); s | ||
julia> scalar_product(s, T2(h)) | ||
1 | ||
|
||
julia> e | ||
Set{ParameterException{QQPolyRingElem}} with 2 elements: | ||
(2*n1)//(q - 1) ∈ ℤ | ||
(3*n1)//(q - 1) ∈ ℤ | ||
With exceptions: | ||
3*n1 ∈ (q - 1)ℤ | ||
2*n1 ∈ (q - 1)ℤ |