Skip to content
Change the repository type filter

All

    Repositories list

    • "Accurate predictions on small data with a tabular foundation model" - ⚡ Easy API access to the tabular foundation model TabPFN ⚡
      Python
      Apache License 2.0
      8000Updated Jan 9, 2025Jan 9, 2025
    • TabPFN

      Public
      "Accurate predictions on small data with a tabular foundation model" - ⚡ TabPFN: Foundation Model for Tabular Data ⚡
      Python
      Other
      193000Updated Jan 9, 2025Jan 9, 2025
    • "Accurate predictions on small data with a tabular foundation model" - Community extensions for TabPFN - the foundation model for tabular data. Built with TabPFN!
      Python
      Apache License 2.0
      9000Updated Jan 9, 2025Jan 9, 2025
    • Sukthanker RS, Zela A, Staffler B, et al. HW-GPT-Bench: Hardware-Aware Architecture Benchmark for Language Models [Internet]. In: NeurIPS 2024 Track Datasets and Benchmarks Poster. 2024. Available from: https://openreview.net/pdf?id=urJyyMKs7E
      Python
      Apache License 2.0
      3000Updated Dec 6, 2024Dec 6, 2024
    • Brunn N, Hackenberg M, Vogel T, Binder H. Sparse dimensionality reduction for analyzing single-cell-resolved interactions [Internet]. 2024;Available from: https://www.biorxiv.org/content/10.1101/2024.12.01.626228v1
      Julia
      MIT License
      1000Updated Nov 29, 2024Nov 29, 2024
    • Küken J, Purucker L. Large Language Models Engineer Too Many Simple Features for Tabular Data [Internet]. 2024;Available from: https://www.arxiv.org/abs/2410.17787
      1000Updated Oct 24, 2024Oct 24, 2024
    • Heinzel CS, Baumdicker F, Pfafffelhuber P. Revealing the range of maximum likelihood estimates in the admixture model. bioRxiv. 2024:2024-10.
      HiveQL
      1000Updated Oct 22, 2024Oct 22, 2024
    • Hackenberg M, Pfaffenlehner M, Behrens M, Pechmann A, Kirschner J, Binder H. Investigating a domain adaptation approach for integrating different measurement instruments in a longitudinal clinical registry [Internet]. 2023;Available from: http://arxiv.org/abs/2312.00616
      Julia
      1000Updated Oct 21, 2024Oct 21, 2024
    • Lennart Purucker collaboration
      Jupyter Notebook
      1000Updated Oct 6, 2024Oct 6, 2024
    • HA-ES

      Public
      Maier, J., Möller, F., & Purucker, L. (2024). Hardware Aware Ensemble Selection for Balancing Predictive Accuracy and Cost. Paper presented at the Third International Conference on Automated Machine Learning (AutoML 2024) Workshop. arXiv. https://arxiv.org/abs/2408.02280
      Python
      MIT License
      1000Updated Oct 4, 2024Oct 4, 2024
    • QTT

      Public
      Rapant I, Purucker L, Ferreira F, Arango SP, Kadra A, Grabocka J, Hutter F. Quick-Tune-Tool: A Practical Tool and its User Guide for Automatically Finetuning Pretrained Models. InAutoML Conference 2024 (Workshop Track).
      Jupyter Notebook
      BSD 3-Clause "New" or "Revised" License
      6000Updated Sep 27, 2024Sep 27, 2024
    • CodeBase

      Public
      "Coupling of metabolomics and exome sequencing reveals graded effects of rare damaging heterozygous variants on gene function and resulting traits and diseases". Code for the silico approach
      R
      GNU General Public License v3.0
      2000Updated Sep 26, 2024Sep 26, 2024
    • Pfefferle A, Purucker L, Hutter F. DAFT: Data-Aware Fine-Tuning of Foundation Models for Efficient and Effective Medical Image Segmentation. InCVPR 2024: Segment Anything In Medical Images On Laptop 2024.
      Python
      BSD 3-Clause "New" or "Revised" License
      6000Updated Sep 14, 2024Sep 14, 2024
    • .github

      Public
      0000Updated Aug 30, 2024Aug 30, 2024
    • amltk

      Public
      Bergman E, Feurer M, Bahram A, Balef AR, Purucker L, Segel S, Lindauer M, Hutter F, Eggensperger K. AMLTK: A Modular AutoML Toolkit in Python. Journal of Open Source Software. 2024 Aug 14;9(100):6367.
      Python
      BSD 3-Clause "New" or "Revised" License
      6000Updated Aug 14, 2024Aug 14, 2024
    • Farhadyar K, Bonofiglio F, Hackenberg M, Behrens M, Zöller D, Binder H. Combining propensity score methods with variational autoencoders for generating synthetic data in presence of latent sub-groups. BMC Medical Research Methodology. 2024 Sep 9;24(1):198.
      Jupyter Notebook
      MIT License
      1000Updated Jul 9, 2024Jul 9, 2024
    • Bergman E, Purucker L, Hutter F. Don't Waste Your Time: Early Stopping Cross-Validation. arXiv preprint arXiv:2405.03389. 2024 May 6.
      Python
      BSD 3-Clause "New" or "Revised" License
      1000Updated May 27, 2024May 27, 2024
    • ovqa

      Public
      Ging S, Bravo MA, Brox T. Open-ended VQA benchmarking of Vision-Language models by exploiting Classification datasets and their semantic hierarchy. arXiv preprint arXiv:2402.07270. 2024 Feb 11.
      Python
      Apache License 2.0
      1000Updated May 24, 2024May 24, 2024
    • CRISPert

      Public
      Jobson Pargeter W, Backofen R, Tran VD. CRISPert: A Transformer-Based Model for CRISPR-Cas Off-Target Prediction. In: Machine Learning and Knowledge Discovery in Databases. Research Track. Cham: Springer Nature Switzerland; 2024. p. 92–104.
      Python
      1000Updated Mar 28, 2024Mar 28, 2024
    • simcow

      Public
      Max Behrens collaboration
      R
      BSD 3-Clause "New" or "Revised" License
      1000Updated Jan 16, 2024Jan 16, 2024
    • Hackenberg M, Pechmann A, Kreutz C, Kirschner J, Binder H. A statistical approach to latent dynamic modeling with differential equations. 2023. arXiv:2311.16286
      Julia
      MIT License
      1000Updated Jan 9, 2024Jan 9, 2024