Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[CPU] oneDNN3.6 cherry-pick backports #28843

Merged
merged 1 commit into from
Feb 11, 2025
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
Expand Up @@ -273,6 +273,7 @@ void BrgemmKernel::init_brgemm_copy_a(
: DnnlExtensionUtils::sizeOfDataType(static_cast<dnnl::memory::data_type>(dt_in0));
brgCopyKernelConf.transposed_A = transpose;
brgCopyKernelConf.isa = is_avx_f16_only ? avx512_core_fp16 : avx512_core_amx;
brgCopyKernelConf.orig_wei_dt = static_cast<dnnl_data_type_t>(DnnlExtensionUtils::ElementTypeToDataType(inType));

create_brgemm_matmul_copy_a(brgCopyKernel, &brgCopyKernelConf);
}
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -479,18 +479,12 @@ std::vector<std::string> disabledTestPatterns() {
R"(.*smoke_MatMulCompressedWeights_corner_cases_basic/MatmulWeightsDecompression.CompareWithRefs/data_shape=\[\?.\?.\?\]_\(\[1,1,4096\]\)_weights_shape=\[4096,4096\]_group_size=128_weights_precision=nf4_decompression_precision=f16_scale_precision=undefined_transpose_weights=0_decompression_subtract=full_reshape_on_decompression=1_config=\(\).*)");
retVector.emplace_back(R"(.*smoke_RDFT_CPU_1D/RDFTTestCPU.CompareWithRefs/prec=f32_IS0=\[\]_TS0=\(\(126\)\)_constAxes=true_axes=\(\(0\)\)_isInverse=false.*)");
retVector.emplace_back(R"(.*smoke_RDFT_CPU_2D/RDFTTestCPU.CompareWithRefs/prec=f32_IS0=\[\]_TS0=\(\(16.38\)\)_constAxes=true_axes=\(\(0.1\)\)_isInverse=false.*)");
// Issue: MFDNN-12818
retVector.emplace_back(R"(.*smoke_LPT/RecurrentCellTransformation.CompareWithRefImpl/f32_\[1,1,3\]_CPU_f32FQ_X_level=256_.*_FQ_W_level=255.*)");
retVector.emplace_back(R"(.*smoke_static/ConvertFqRnnToQuantizedRnn.CompareWithRefs/Type=GRUSequence.*2.5.10.*2.1.4.*2.1.4.*)");
#endif
if (!ov::with_cpu_x86_avx512_core()) {
// on platforms which do not support bfloat16, we are disabling bf16 tests since there are no bf16 primitives,
// tests are useless on such platforms
retVector.emplace_back(R"(.*(BF|bf)16.*)");
retVector.emplace_back(R"(.*bfloat16.*)");
// Issue: MFDNN-12818
retVector.emplace_back(R"(.*smoke_LPT/RecurrentCellTransformation.CompareWithRefImpl/f32_\[1,1,3\]_CPU_f32FQ_X_level=256_.*_FQ_W_level=255.*)");
retVector.emplace_back(R"(.*smoke_static/ConvertFqRnnToQuantizedRnn.CompareWithRefs/Type=GRUSequence.*2.5.10.*2.1.4.*2.1.4.*)");
}
if (!ov::with_cpu_x86_avx2()) {
// MatMul in Snippets uses BRGEMM that is supported only on AVX2 (and newer) platforms
Expand Down
Loading