Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[PT FE] Add support for aten::numpy_T and aten::feature_dropout #20136

Merged
Merged
Show file tree
Hide file tree
Changes from 3 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 2 additions & 0 deletions src/frontends/pytorch/src/op_table.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -301,6 +301,7 @@ const std::map<std::string, CreatorFunction> get_supported_ops_ts() {
{"aten::eye", op::translate_eye},
{"aten::fake_quantize_per_channel_affine", op::translate_fake_quantize_per_channel_affine},
{"aten::fake_quantize_per_tensor_affine", op::translate_fake_quantize_per_tensor_affine},
{"aten::feature_dropout", op::skip_node},
{"aten::fill_", op::inplace_op<op::translate_fill_>},
{"aten::flatten", op::quantizable_op<op::translate_flatten>},
{"aten::flip", op::translate_flip},
Expand Down Expand Up @@ -384,6 +385,7 @@ const std::map<std::string, CreatorFunction> get_supported_ops_ts() {
{"aten::nonzero", op::translate_nonzero},
{"aten::norm", op::translate_norm},
{"aten::numel", op::translate_numel},
{"aten::numpy_T", op::translate_t},
{"aten::one_hot", op::translate_one_hot},
{"aten::ones", op::translate_ones},
{"aten::ones_like", op::translate_ones_like},
Expand Down
17 changes: 11 additions & 6 deletions tests/layer_tests/pytorch_tests/test_transpose.py
Original file line number Diff line number Diff line change
Expand Up @@ -57,31 +57,36 @@ def _prepare_input(self, num_dims=2, input_dtype="float32"):
return (np.array(num_dims).astype(input_dtype),)
return (np.random.randn(*shape[:num_dims]).astype(input_dtype),)

def create_model(self, num_dims=2, inplace=False):
def create_model(self, mode):
class aten_transpose(torch.nn.Module):
def __init__(self, inplace):
super(aten_transpose, self).__init__()
if inplace:
if mode == "inplace":
self.forward = self.forward_inplace
elif mode == "numpy":
self.forward = self.forward_numpy_t

def forward(self, x):
return x.t(), x

def forward_inplace(self, x):
return x.t_(), x

def forward_numpy_t(self, x):
return x.T, x

ref_net = None

return aten_transpose(inplace), ref_net, "aten::t" if not inplace else "aten::t_"
return aten_transpose(mode), ref_net, "aten::t_" if mode == "inplace" else ("aten::numpy_T" if mode == "numpy" else "aten::t")

@pytest.mark.parametrize("num_dims", [0, 1, 2])
@pytest.mark.parametrize("input_dtype", ["float32", "int32"])
@pytest.mark.parametrize("inplace", [True, False])
@pytest.mark.parametrize("mode", [None, "inplace", "numpy"])
@pytest.mark.nightly
@pytest.mark.precommit
def test_t_small(self, num_dims, input_dtype, inplace, ie_device, precision, ir_version):
def test_t_small(self, num_dims, input_dtype, mode, ie_device, precision, ir_version):
self._test(
*self.create_model(num_dims, inplace),
*self.create_model(mode),
ie_device,
precision,
ir_version,
Expand Down