Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[PT FE] Add tests for detectron2 models #19888

Merged
merged 4 commits into from
Sep 18, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions .github/workflows/linux.yml
Original file line number Diff line number Diff line change
Expand Up @@ -926,6 +926,7 @@ jobs:
- name: PyTorch Models Tests
run: |
python3 -m pip install -r ${{ env.MODEL_HUB_TESTS_INSTALL_DIR }}/torch_tests/requirements.txt
python3 -m pip install -r ${{ env.MODEL_HUB_TESTS_INSTALL_DIR }}/torch_tests/requirements_secondary.txt
export PYTHONPATH=${{ env.MODEL_HUB_TESTS_INSTALL_DIR }}:$PYTHONPATH
python3 -m pytest ${{ env.MODEL_HUB_TESTS_INSTALL_DIR }}/torch_tests/ -m ${{ env.TYPE }} --html=${{ env.INSTALL_TEST_DIR }}/TEST-torch_model_tests.html --self-contained-html
env:
Expand Down
3 changes: 2 additions & 1 deletion tests/model_hub_tests/models_hub_common/utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -32,7 +32,8 @@ def compare_two_tensors(ov_res, fw_res, eps):
is_ok = True
if not np.allclose(ov_res, fw_res, atol=eps, rtol=eps, equal_nan=True):
is_ok = False
print("Max diff is {}".format(np.array(abs(ov_res - fw_res)).max()))
max_diff = np.abs(ov_res.astype(np.float32) - fw_res.astype(np.float32)).max()
print("Max diff is {}".format(max_diff))
else:
print("Accuracy validation successful!\n")
print("absolute eps: {}, relative eps: {}".format(eps, eps))
Expand Down
65 changes: 65 additions & 0 deletions tests/model_hub_tests/torch_tests/detectron2_models
Original file line number Diff line number Diff line change
@@ -0,0 +1,65 @@
COCO-Detection/fast_rcnn_R_50_FPN_1x,none
COCO-Detection/faster_rcnn_R_101_C4_3x,none
COCO-Detection/faster_rcnn_R_101_DC5_3x,none
COCO-Detection/faster_rcnn_R_101_FPN_3x,none
COCO-Detection/faster_rcnn_R_50_C4_1x,none
COCO-Detection/faster_rcnn_R_50_C4_3x,none
COCO-Detection/faster_rcnn_R_50_DC5_1x,none
COCO-Detection/faster_rcnn_R_50_DC5_3x,none
COCO-Detection/faster_rcnn_R_50_FPN_1x,none
COCO-Detection/faster_rcnn_R_50_FPN_3x,none
COCO-Detection/faster_rcnn_X_101_32x8d_FPN_3x,none
COCO-Detection/retinanet_R_101_FPN_3x,none
COCO-Detection/retinanet_R_50_FPN_1x,none
COCO-Detection/retinanet_R_50_FPN_3x,none
COCO-Detection/rpn_R_50_C4_1x,none
COCO-Detection/rpn_R_50_FPN_1x,none
COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_1x,none
COCO-InstanceSegmentation/mask_rcnn_R_101_C4_3x,none
COCO-InstanceSegmentation/mask_rcnn_R_101_DC5_3x,none
COCO-InstanceSegmentation/mask_rcnn_R_101_FPN_3x,none
COCO-InstanceSegmentation/mask_rcnn_R_50_C4_1x,none
COCO-InstanceSegmentation/mask_rcnn_R_50_C4_3x,none
COCO-InstanceSegmentation/mask_rcnn_R_50_DC5_1x,none
COCO-InstanceSegmentation/mask_rcnn_R_50_DC5_3x,none
#COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_1x_giou,none - Pretrained model is not available!
COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x,none
COCO-InstanceSegmentation/mask_rcnn_X_101_32x8d_FPN_3x,none
#COCO-Keypoints/Base-Keypoint-RCNN-FPN,none - Pretrained model is not available!
COCO-Keypoints/keypoint_rcnn_R_101_FPN_3x,none
COCO-Keypoints/keypoint_rcnn_R_50_FPN_1x,none
COCO-Keypoints/keypoint_rcnn_R_50_FPN_3x,none
COCO-Keypoints/keypoint_rcnn_X_101_32x8d_FPN_3x,none
#COCO-PanopticSegmentation/Base-Panoptic-FPN,none - Pretrained model is not available!
COCO-PanopticSegmentation/panoptic_fpn_R_101_3x,none
COCO-PanopticSegmentation/panoptic_fpn_R_50_1x,none
COCO-PanopticSegmentation/panoptic_fpn_R_50_3x,none
Cityscapes/mask_rcnn_R_50_FPN,none
Detectron1-Comparisons/faster_rcnn_R_50_FPN_noaug_1x,none
Detectron1-Comparisons/keypoint_rcnn_R_50_FPN_1x,none
Detectron1-Comparisons/mask_rcnn_R_50_FPN_noaug_1x,none
LVISv0.5-InstanceSegmentation/mask_rcnn_R_101_FPN_1x,none
LVISv0.5-InstanceSegmentation/mask_rcnn_R_50_FPN_1x,none
LVISv0.5-InstanceSegmentation/mask_rcnn_X_101_32x8d_FPN_1x,none
#LVISv1-InstanceSegmentation/mask_rcnn_R_101_FPN_1x,none - Pretrained model is not available!
#LVISv1-InstanceSegmentation/mask_rcnn_R_50_FPN_1x,none - Pretrained model is not available!
#LVISv1-InstanceSegmentation/mask_rcnn_X_101_32x8d_FPN_1x,none - Pretrained model is not available!
#Misc/mask_rcnn_R_50_FPN_1x_cls_agnostic,none - Pretrained model is not available!
Misc/cascade_mask_rcnn_R_50_FPN_1x,none
Misc/cascade_mask_rcnn_R_50_FPN_3x,none
Misc/cascade_mask_rcnn_X_152_32x8d_FPN_IN5k_gn_dconv,none
Misc/mask_rcnn_R_50_FPN_1x_dconv_c3-c5,none
Misc/mask_rcnn_R_50_FPN_3x_dconv_c3-c5,none
Misc/mask_rcnn_R_50_FPN_3x_gn,none
Misc/mask_rcnn_R_50_FPN_3x_syncbn,none
Misc/panoptic_fpn_R_101_dconv_cascade_gn_3x,none
Misc/scratch_mask_rcnn_R_50_FPN_3x_gn,none
Misc/scratch_mask_rcnn_R_50_FPN_9x_gn,none
Misc/scratch_mask_rcnn_R_50_FPN_9x_syncbn,none
#Misc/semantic_R_50_FPN_1x,none - Pretrained model is not available!
PascalVOC-Detection/faster_rcnn_R_50_C4,none
#PascalVOC-Detection/faster_rcnn_R_50_FPN,none - Pretrained model is not available!
#Base-RCNN-C4,none - Pretrained model is not available!
#Base-RCNN-DilatedC5,none - Pretrained model is not available!
#Base-RCNN-FPN,none - Pretrained model is not available!
#Base-RetinaNet,none - Pretrained model is not available!
26 changes: 26 additions & 0 deletions tests/model_hub_tests/torch_tests/detectron2_precommit
Original file line number Diff line number Diff line change
@@ -0,0 +1,26 @@
COCO-Detection/faster_rcnn_R_50_C4_1x,none
COCO-Detection/faster_rcnn_R_50_DC5_3x,none
COCO-Detection/faster_rcnn_R_50_FPN_1x,none
COCO-Detection/faster_rcnn_X_101_32x8d_FPN_3x,none
COCO-Detection/retinanet_R_50_FPN_1x,none
COCO-Detection/rpn_R_50_C4_1x,none
COCO-Detection/rpn_R_50_FPN_1x,none
COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_1x,none
COCO-InstanceSegmentation/mask_rcnn_R_50_C4_3x,none
COCO-InstanceSegmentation/mask_rcnn_R_50_DC5_3x,none
COCO-InstanceSegmentation/mask_rcnn_X_101_32x8d_FPN_3x,none
COCO-Keypoints/keypoint_rcnn_R_50_FPN_3x,none
COCO-Keypoints/keypoint_rcnn_X_101_32x8d_FPN_3x,none
Cityscapes/mask_rcnn_R_50_FPN,none
Detectron1-Comparisons/faster_rcnn_R_50_FPN_noaug_1x,none
Detectron1-Comparisons/keypoint_rcnn_R_50_FPN_1x,none
Detectron1-Comparisons/mask_rcnn_R_50_FPN_noaug_1x,none
LVISv0.5-InstanceSegmentation/mask_rcnn_R_50_FPN_1x,none
LVISv0.5-InstanceSegmentation/mask_rcnn_X_101_32x8d_FPN_1x,none
Misc/cascade_mask_rcnn_R_50_FPN_3x,none
Misc/cascade_mask_rcnn_X_152_32x8d_FPN_IN5k_gn_dconv,none
Misc/mask_rcnn_R_50_FPN_3x_dconv_c3-c5,none
Misc/mask_rcnn_R_50_FPN_3x_gn,none
Misc/mask_rcnn_R_50_FPN_3x_syncbn,none
Misc/scratch_mask_rcnn_R_50_FPN_9x_syncbn,none
PascalVOC-Detection/faster_rcnn_R_50_C4,none
2 changes: 1 addition & 1 deletion tests/model_hub_tests/torch_tests/requirements.txt
Original file line number Diff line number Diff line change
Expand Up @@ -4,4 +4,4 @@ pytest
pytest-html
torch
torchvision
av
av
Original file line number Diff line number Diff line change
@@ -0,0 +1,3 @@
-c ../../constraints.txt
# This file contains requirements dependednt from modules in requirements.txt
git+https://github.com/facebookresearch/detectron2.git
93 changes: 93 additions & 0 deletions tests/model_hub_tests/torch_tests/test_detectron2.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,93 @@
# Copyright (C) 2018-2023 Intel Corporation
# SPDX-License-Identifier: Apache-2.0

import os
import pytest
import torch
from models_hub_common.test_convert_model import TestConvertModel
from openvino import convert_model
from models_hub_common.utils import get_models_list, compare_two_tensors


class TestDetectron2ConvertModel(TestConvertModel):
def setup_class(self):
from PIL import Image
import requests

url = "http://images.cocodataset.org/val2017/000000039769.jpg"
self.image = Image.open(requests.get(url, stream=True).raw)
self.image = self.image.resize([640, 480])

def load_model(self, model_name, model_link):
from detectron2 import model_zoo, export
from detectron2.modeling import build_model
from detectron2.checkpoint import DetectionCheckpointer
from detectron2.config import CfgNode
import torchvision.transforms as transforms

transform = transforms.Compose([transforms.PILToTensor()])
image = transform(self.image)

cfg = model_zoo.get_config(model_name + ".yaml", trained=True)
assert isinstance(cfg, CfgNode), "Unexpected config"
cfg.MODEL.DEVICE = "cpu"
model = build_model(cfg)
DetectionCheckpointer(model, save_to_disk=False).load(cfg.MODEL.WEIGHTS)

model.eval()
inputs = [{"image": image,
"height": torch.tensor(image.shape[1]),
"width": torch.tensor(image.shape[2])}]
adapter = export.TracingAdapter(model, inputs)

self.example = adapter.flattened_inputs
return adapter

def get_inputs_info(self, model_obj):
return None

def prepare_inputs(self, inputs_info):
return [i.numpy() for i in self.example]

def convert_model(self, model_obj):
ov_model = convert_model(model_obj, example_input=self.example)
return ov_model

def infer_fw_model(self, model_obj, inputs):
fw_outputs = model_obj(*[torch.from_numpy(i) for i in inputs])
if isinstance(fw_outputs, dict):
for k in fw_outputs.keys():
fw_outputs[k] = fw_outputs[k].numpy(force=True)
elif isinstance(fw_outputs, (list, tuple)):
fw_outputs = [o.numpy(force=True) for o in fw_outputs]
else:
fw_outputs = [fw_outputs.numpy(force=True)]
return fw_outputs

def compare_results(self, fw_outputs, ov_outputs):
assert len(fw_outputs) == len(ov_outputs), \
"Different number of outputs between TensorFlow and OpenVINO:" \
" {} vs. {}".format(len(fw_outputs), len(ov_outputs))

fw_eps = 5e-2
is_ok = True
for i in range(len(ov_outputs)):
cur_fw_res = fw_outputs[i]
cur_ov_res = ov_outputs[i]
l = min(len(cur_fw_res), len(cur_ov_res))
assert l > 0 or len(cur_fw_res) == len(cur_ov_res), "No boxes were selected."
print(f"fw_re: {cur_fw_res};\n ov_res: {cur_ov_res}")
is_ok = compare_two_tensors(cur_ov_res[:l], cur_fw_res[:l], fw_eps)
assert is_ok, "Accuracy validation failed"

@pytest.mark.parametrize("name,type,mark,reason",
get_models_list(os.path.join(os.path.dirname(__file__), "detectron2_precommit")))
@pytest.mark.precommit
def test_detectron2_precommit(self, name, type, mark, reason, ie_device):
self.run(name, None, ie_device)

@pytest.mark.parametrize("name,type,mark,reason",
get_models_list(os.path.join(os.path.dirname(__file__), "detectron2_models")))
@pytest.mark.nightly
def test_detectron2_all_models(self, name, type, mark, reason, ie_device):
self.run(name, None, ie_device)