Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add whitespace error checking to GitHub Actions #311

Merged
merged 3 commits into from
Jun 25, 2021
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 0 additions & 1 deletion .gitattributes
Original file line number Diff line number Diff line change
Expand Up @@ -26,4 +26,3 @@ LICENSE text
*.gif binary
*.ttf binary
*.pdf binary

8 changes: 8 additions & 0 deletions .github/workflows/pr_checks.yml
Original file line number Diff line number Diff line change
Expand Up @@ -27,3 +27,11 @@ jobs:
run: |
pytest -v
datum -h
lint:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v2
- name: Checking whitespace
run: |
empty_tree="$(git hash-object -t tree --stdin < /dev/null)"
git diff --check "$empty_tree"
3 changes: 1 addition & 2 deletions datumaro/components/__init__.py
Original file line number Diff line number Diff line change
@@ -1,5 +1,4 @@

# Copyright (C) 2019-2020 Intel Corporation
# Copyright (C) 2019-2021 Intel Corporation
#
# SPDX-License-Identifier: MIT

3 changes: 1 addition & 2 deletions datumaro/components/algorithms/__init__.py
Original file line number Diff line number Diff line change
@@ -1,5 +1,4 @@

# Copyright (C) 2019-2020 Intel Corporation
# Copyright (C) 2019-2021 Intel Corporation
#
# SPDX-License-Identifier: MIT

3 changes: 1 addition & 2 deletions datumaro/plugins/accuracy_checker_plugin/__init__.py
Original file line number Diff line number Diff line change
@@ -1,4 +1,3 @@
# Copyright (C) 2020 Intel Corporation
# Copyright (C) 2020-2021 Intel Corporation
#
# SPDX-License-Identifier: MIT

Original file line number Diff line number Diff line change
Expand Up @@ -56,7 +56,3 @@ def import_prediction(pred):
# -
else:
raise NotImplementedError("Can't convert %s" % type(pred))




18 changes: 9 additions & 9 deletions datumaro/plugins/openvino_plugin/README.md
Original file line number Diff line number Diff line change
@@ -1,17 +1,17 @@
# OpenVINO™ Inference Interpreter
# OpenVINO™ Inference Interpreter
Interpreter samples to parse OpenVINO™ inference outputs.

## Models supported from interpreter samples
There are detection and image classification examples.
There are detection and image classification examples.

- Detection (SSD-based)
- Intel Pre-trained Models > Object Detection
- Intel Pre-trained Models > Object Detection
- [face-detection-0200](https://docs.openvinotoolkit.org/latest/omz_models_intel_face_detection_0200_description_face_detection_0200.html)
- [face-detection-0202](https://docs.openvinotoolkit.org/latest/omz_models_intel_face_detection_0202_description_face_detection_0202.html)
- [face-detection-0204](https://docs.openvinotoolkit.org/latest/omz_models_intel_face_detection_0204_description_face_detection_0204.html)
- [person-detection-0200](https://docs.openvinotoolkit.org/latest/omz_models_intel_person_detection_0200_description_person_detection_0200.html)
- [person-detection-0201](https://docs.openvinotoolkit.org/latest/omz_models_intel_person_detection_0201_description_person_detection_0201.html)
- [person-detection-0202](https://docs.openvinotoolkit.org/latest/omz_models_intel_person_detection_0202_description_person_detection_0202.html)
- [person-detection-0202](https://docs.openvinotoolkit.org/latest/omz_models_intel_person_detection_0202_description_person_detection_0202.html)
- [person-vehicle-bike-detection-2000](https://docs.openvinotoolkit.org/latest/omz_models_intel_person_vehicle_bike_detection_2000_description_person_vehicle_bike_detection_2000.html)
- [person-vehicle-bike-detection-2001](https://docs.openvinotoolkit.org/latest/omz_models_intel_person_vehicle_bike_detection_2001_description_person_vehicle_bike_detection_2001.html)
- [person-vehicle-bike-detection-2002](https://docs.openvinotoolkit.org/latest/omz_models_intel_person_vehicle_bike_detection_2002_description_person_vehicle_bike_detection_2002.html)
Expand All @@ -28,7 +28,7 @@ There are detection and image classification examples.
- [mobilenet-v2-pytorch](https://docs.openvinotoolkit.org/latest/omz_models_public_mobilenet_v2_pytorch_mobilenet_v2_pytorch.html)

You can find more OpenVINO™ Trained Models [here](https://docs.openvinotoolkit.org/latest/omz_models_intel_index.html)
To run the inference with OpenVINO™, the model format should be Intermediate Representation(IR).
To run the inference with OpenVINO™, the model format should be Intermediate Representation(IR).
For the Caffe/TensorFlow/MXNet/Kaldi/ONNX models, please see the [Model Conversion Instruction](https://docs.openvinotoolkit.org/latest/openvino_docs_MO_DG_prepare_model_convert_model_Converting_Model.html)

You need to implement your own interpreter samples to support the other OpenVINO™ Trained Models.
Expand All @@ -49,12 +49,12 @@ You need to implement your own interpreter samples to support the other OpenVINO
```

## Model inference
- Prerequisites:
- Prerequisites:
- OpenVINO™ (To install OpenVINO™, please see the [OpenVINO™ Installation Instruction](https://docs.openvinotoolkit.org/latest/openvino_docs_install_guides_installing_openvino_linux.html))
- Datumaro (To install Datumaro, please see the [User Manual](docs/user_manual.md))
- OpenVINO™ models (To download OpenVINO™ models, please see the [Model Downloader Instruction](https://docs.openvinotoolkit.org/latest/omz_tools_downloader_README.html))
- PASCAL VOC 2012 dataset (To download VOC 2012 dataset, please go [VOC2012 download](http://host.robots.ox.ac.uk/pascal/VOC/voc2012/#devkit))

- To run the inference with OpenVINO™ models and the interpreter samples, please follow the instructions below.

```bash
Expand All @@ -76,7 +76,7 @@ You need to implement your own interpreter samples to support the other OpenVINO
-i samples/ssd_mobilenet_coco_detection_interp.py
datum add path -p proj_ssd_mobilenet_v2_coco_detection -f voc VOCdevkit/
datum model run -p proj_ssd_mobilenet_v2_coco_detection -m model-0

# Classification> mobilenet-v2-pytorch
source /opt/intel/openvino/bin/setupvars.sh
cd datumaro/plugins/openvino_plugin
Expand Down
3 changes: 1 addition & 2 deletions datumaro/plugins/openvino_plugin/launcher.py
Original file line number Diff line number Diff line change
@@ -1,5 +1,5 @@

# Copyright (C) 2019-2020 Intel Corporation
# Copyright (C) 2019-2021 Intel Corporation
#
# SPDX-License-Identifier: MIT

Expand Down Expand Up @@ -195,4 +195,3 @@ def categories(self):

def process_outputs(self, inputs, outputs):
return self._interpreter.process_outputs(inputs, outputs)

Original file line number Diff line number Diff line change
Expand Up @@ -65,10 +65,10 @@ def process_outputs(inputs, outputs):
w = min(int(det[5] * input_width - x), input_width)
h = min(int(det[6] * input_height - y), input_height)

image_results.append(Bbox(x, y, w, h, label=label,
image_results.append(Bbox(x, y, w, h, label=label,
attributes={ 'score': conf, 'scores': list(map(float, det_confs)) }
))

results.append(image_results)

return results
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -65,10 +65,10 @@ def process_outputs(inputs, outputs):
w = min(int(det[5] * input_width - x), input_width)
h = min(int(det[6] * input_height - y), input_height)

image_results.append(Bbox(x, y, w, h, label=label,
image_results.append(Bbox(x, y, w, h, label=label,
attributes={ 'score': conf, 'scores': list(map(float, det_confs)) }
))

results.append(image_results)

return results
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -65,10 +65,10 @@ def process_outputs(inputs, outputs):
w = min(int(det[5] * input_width - x), input_width)
h = min(int(det[6] * input_height - y), input_height)

image_results.append(Bbox(x, y, w, h, label=label,
image_results.append(Bbox(x, y, w, h, label=label,
attributes={ 'score': conf, 'scores': list(map(float, det_confs)) }
))

results.append(image_results)

return results
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -65,10 +65,10 @@ def process_outputs(inputs, outputs):
w = min(int(det[5] * input_width - x), input_width)
h = min(int(det[6] * input_height - y), input_height)

image_results.append(Bbox(x, y, w, h, label=label,
image_results.append(Bbox(x, y, w, h, label=label,
attributes={ 'score': conf, 'scores': list(map(float, det_confs)) }
))

results.append(image_results)

return results
Expand Down
2 changes: 1 addition & 1 deletion docs/formats/coco_user_manual.md
Original file line number Diff line number Diff line change
Expand Up @@ -103,7 +103,7 @@ datum import --format coco_stuff --input-path <path/to/stuff.json>
Datumaro supports the following COCO tasks:
- [Image Captioning](https://cocodataset.org/#captions-2015) (`coco_caption`)
- [Object Detection](https://cocodataset.org/#detection-2020) (`coco_instances`)
- Image classification (our extension) (`coco_labels`) - a format like Object Detection, which uses
- Image classification (our extension) (`coco_labels`) - a format like Object Detection, which uses
only `category_id` and `score` annotation fields
- [Panoptic Segmentation](https://cocodataset.org/#panoptic-2020) (`coco_panoptic`)
- [Keypoint Detection](https://cocodataset.org/#keypoints-2020) (`coco_person_keypoints`)
Expand Down
8 changes: 4 additions & 4 deletions docs/formats/mnist_user_manual.md
Original file line number Diff line number Diff line change
Expand Up @@ -64,9 +64,9 @@ MNIST dataset directory should have the following structure:
```
└─ Dataset/
├── labels.txt # list of non-digit labels (optional)
├── t10k-images-idx3-ubyte.gz
├── t10k-labels-idx1-ubyte.gz
├── train-images-idx3-ubyte.gz
├── t10k-images-idx3-ubyte.gz
├── t10k-labels-idx1-ubyte.gz
├── train-images-idx3-ubyte.gz
└── train-labels-idx1-ubyte.gz
```
MNIST in CSV dataset directory should have the following structure:
Expand All @@ -75,7 +75,7 @@ MNIST in CSV dataset directory should have the following structure:
```
└─ Dataset/
├── labels.txt # list of non-digit labels (optional)
├── mnist_test.csv
├── mnist_test.csv
└── mnist_train.csv
```
If the dataset needs non-digit labels, you need to add the labels.txt
Expand Down
1 change: 0 additions & 1 deletion tests/assets/lfw_dataset/test/pairs.txt
Original file line number Diff line number Diff line change
Expand Up @@ -2,4 +2,3 @@
name1 1 2
name0 1 name1 1
name0 1 name1 2

41 changes: 20 additions & 21 deletions tests/assets/tf_detection_api_dataset/label_map.pbtxt
Original file line number Diff line number Diff line change
@@ -1,50 +1,49 @@
item {
id: 1
name: 'label_0'
id: 1
name: 'label_0'
}

item {
id: 2
name: 'label_1'
id: 2
name: 'label_1'
}

item {
id: 3
name: 'label_2'
id: 3
name: 'label_2'
}

item {
id: 4
name: 'label_3'
id: 4
name: 'label_3'
}

item {
id: 5
name: 'label_4'
id: 5
name: 'label_4'
}

item {
id: 6
name: 'label_5'
id: 6
name: 'label_5'
}

item {
id: 7
name: 'label_6'
id: 7
name: 'label_6'
}

item {
id: 8
name: 'label_7'
id: 8
name: 'label_7'
}

item {
id: 9
name: 'label_8'
id: 9
name: 'label_8'
}

item {
id: 10
name: 'label_9'
id: 10
name: 'label_9'
}

Original file line number Diff line number Diff line change
@@ -1,7 +1,7 @@
0--Parade/0_Parade_image_01.jpg
1
1 2 2 2 0 0 0 0 0 0
1 2 2 2 0 0 0 0 0 0
1--Handshaking/1_Handshaking_image_02.jpg
2
1 1 2 2 0 0 1 0 0 0
5 1 2 2 0 0 1 0 0 0
1 1 2 2 0 0 1 0 0 0
5 1 2 2 0 0 1 0 0 0
Original file line number Diff line number Diff line change
@@ -1,5 +1,5 @@
0--Parade/0_Parade_image_03.jpg
3
0 0 1 1 2 0 0 0 2 0
3 2 1 2 0 0 0 1 0 0
5 6 1 1 2 0 0 0 2 0
0 0 1 1 2 0 0 0 2 0
3 2 1 2 0 0 0 1 0 0
5 6 1 1 2 0 0 0 2 0