-
Notifications
You must be signed in to change notification settings - Fork 1.3k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
5 changed files
with
308 additions
and
0 deletions.
There are no files selected for viewing
199 changes: 199 additions & 0 deletions
199
configs/bottom_up/hrnet/coco/hrnet_w32_coco_512x512_fp16.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,199 @@ | ||
log_level = 'INFO' | ||
load_from = None | ||
resume_from = None | ||
# fp16 settings | ||
fp16 = dict() | ||
# runtime settings | ||
dist_params = dict(backend='nccl') | ||
workflow = [('train', 1)] | ||
checkpoint_config = dict(interval=50) | ||
evaluation = dict(interval=50, metric='mAP', key_indicator='AP') | ||
|
||
optimizer = dict( | ||
type='Adam', | ||
lr=0.0015, | ||
) | ||
optimizer_config = dict(grad_clip=None) | ||
# learning policy | ||
lr_config = dict( | ||
policy='step', | ||
warmup='linear', | ||
warmup_iters=500, | ||
warmup_ratio=0.001, | ||
step=[200, 260]) | ||
total_epochs = 300 | ||
log_config = dict( | ||
interval=50, | ||
hooks=[ | ||
dict(type='TextLoggerHook'), | ||
# dict(type='TensorboardLoggerHook') | ||
]) | ||
|
||
channel_cfg = dict( | ||
dataset_joints=17, | ||
dataset_channel=[ | ||
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16], | ||
], | ||
inference_channel=[ | ||
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 | ||
]) | ||
|
||
data_cfg = dict( | ||
image_size=512, | ||
base_size=256, | ||
base_sigma=2, | ||
heatmap_size=[128], | ||
num_joints=channel_cfg['dataset_joints'], | ||
dataset_channel=channel_cfg['dataset_channel'], | ||
inference_channel=channel_cfg['inference_channel'], | ||
num_scales=1, | ||
scale_aware_sigma=False, | ||
) | ||
|
||
# model settings | ||
model = dict( | ||
type='BottomUp', | ||
pretrained='models/pytorch/imagenet/hrnet_w32-36af842e.pth', | ||
backbone=dict( | ||
type='HRNet', | ||
in_channels=3, | ||
extra=dict( | ||
stage1=dict( | ||
num_modules=1, | ||
num_branches=1, | ||
block='BOTTLENECK', | ||
num_blocks=(4, ), | ||
num_channels=(64, )), | ||
stage2=dict( | ||
num_modules=1, | ||
num_branches=2, | ||
block='BASIC', | ||
num_blocks=(4, 4), | ||
num_channels=(32, 64)), | ||
stage3=dict( | ||
num_modules=4, | ||
num_branches=3, | ||
block='BASIC', | ||
num_blocks=(4, 4, 4), | ||
num_channels=(32, 64, 128)), | ||
stage4=dict( | ||
num_modules=3, | ||
num_branches=4, | ||
block='BASIC', | ||
num_blocks=(4, 4, 4, 4), | ||
num_channels=(32, 64, 128, 256))), | ||
), | ||
keypoint_head=dict( | ||
type='BottomUpSimpleHead', | ||
in_channels=32, | ||
num_joints=17, | ||
num_deconv_layers=0, | ||
tag_per_joint=True, | ||
with_ae_loss=[True], | ||
extra=dict(final_conv_kernel=1, )), | ||
train_cfg=dict( | ||
num_joints=channel_cfg['dataset_joints'], | ||
img_size=data_cfg['image_size']), | ||
test_cfg=dict( | ||
num_joints=channel_cfg['dataset_joints'], | ||
max_num_people=30, | ||
scale_factor=[1], | ||
with_heatmaps=[True], | ||
with_ae=[True], | ||
project2image=True, | ||
nms_kernel=5, | ||
nms_padding=2, | ||
tag_per_joint=True, | ||
detection_threshold=0.1, | ||
tag_threshold=1, | ||
use_detection_val=True, | ||
ignore_too_much=False, | ||
adjust=True, | ||
refine=True, | ||
flip_test=True), | ||
loss_pose=dict( | ||
type='MultiLossFactory', | ||
num_joints=17, | ||
num_stages=1, | ||
ae_loss_type='exp', | ||
with_ae_loss=[True], | ||
push_loss_factor=[0.001], | ||
pull_loss_factor=[0.001], | ||
with_heatmaps_loss=[True], | ||
heatmaps_loss_factor=[1.0], | ||
), | ||
) | ||
|
||
train_pipeline = [ | ||
dict(type='LoadImageFromFile'), | ||
dict( | ||
type='BottomUpRandomAffine', | ||
rot_factor=30, | ||
scale_factor=[0.75, 1.5], | ||
scale_type='short', | ||
trans_factor=40), | ||
dict(type='BottomUpRandomFlip', flip_prob=0.5), | ||
dict(type='ToTensor'), | ||
dict( | ||
type='NormalizeTensor', | ||
mean=[0.485, 0.456, 0.406], | ||
std=[0.229, 0.224, 0.225]), | ||
dict( | ||
type='BottomUpGenerateTarget', | ||
sigma=2, | ||
max_num_people=30, | ||
), | ||
dict( | ||
type='Collect', | ||
keys=['img', 'joints', 'targets', 'masks'], | ||
meta_keys=[]), | ||
] | ||
|
||
val_pipeline = [ | ||
dict(type='LoadImageFromFile'), | ||
dict(type='BottomUpGetImgSize', test_scale_factor=[1]), | ||
dict( | ||
type='BottomUpResizeAlign', | ||
transforms=[ | ||
dict(type='ToTensor'), | ||
dict( | ||
type='NormalizeTensor', | ||
mean=[0.485, 0.456, 0.406], | ||
std=[0.229, 0.224, 0.225]), | ||
]), | ||
dict( | ||
type='Collect', | ||
keys=[ | ||
'img', | ||
], | ||
meta_keys=[ | ||
'image_file', 'aug_data', 'test_scale_factor', 'base_size', | ||
'center', 'scale', 'flip_index' | ||
]), | ||
] | ||
|
||
test_pipeline = val_pipeline | ||
|
||
data_root = 'data/coco' | ||
data = dict( | ||
samples_per_gpu=24, | ||
workers_per_gpu=1, | ||
train=dict( | ||
type='BottomUpCocoDataset', | ||
ann_file=f'{data_root}/annotations/person_keypoints_train2017.json', | ||
img_prefix=f'{data_root}/train2017/', | ||
data_cfg=data_cfg, | ||
pipeline=train_pipeline), | ||
val=dict( | ||
type='BottomUpCocoDataset', | ||
ann_file=f'{data_root}/annotations/person_keypoints_val2017.json', | ||
img_prefix=f'{data_root}/val2017/', | ||
data_cfg=data_cfg, | ||
pipeline=val_pipeline), | ||
test=dict( | ||
type='BottomUpCocoDataset', | ||
ann_file=f'{data_root}/annotations/person_keypoints_val2017.json', | ||
img_prefix=f'{data_root}/val2017/', | ||
data_cfg=data_cfg, | ||
pipeline=val_pipeline), | ||
) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,103 @@ | ||
import tempfile | ||
|
||
import pytest | ||
import torch | ||
import torch.nn as nn | ||
from mmcv import Config | ||
from torch.utils.data import Dataset | ||
|
||
from mmpose.apis import train_model | ||
from mmpose.datasets.registry import DATASETS | ||
|
||
|
||
@DATASETS.register_module() | ||
class ExampleDataset(Dataset): | ||
|
||
def __init__(self, test_mode=False): | ||
self.test_mode = test_mode | ||
|
||
def evaluate(self, results, work_dir=None, logger=None): | ||
eval_results = dict() | ||
eval_results['acc'] = 1 | ||
return eval_results | ||
|
||
def __getitem__(self, idx): | ||
results = dict(imgs=torch.tensor([1])) | ||
return results | ||
|
||
def __len__(self): | ||
return 1 | ||
|
||
|
||
class ExampleModel(nn.Module): | ||
|
||
def __init__(self): | ||
super().__init__() | ||
self.test_cfg = None | ||
self.conv1 = nn.Conv2d(3, 8, kernel_size=1) | ||
self.norm1 = nn.BatchNorm1d(2) | ||
|
||
def forward(self, imgs, return_loss=False): | ||
self.norm1(torch.rand(3, 2).cuda()) | ||
losses = dict() | ||
losses['test_loss'] = torch.tensor([0.5], requires_grad=True) | ||
return losses | ||
|
||
def train_step(self, data_batch, optimizer, **kwargs): | ||
imgs = data_batch['imgs'] | ||
losses = self.forward(imgs, True) | ||
loss = torch.tensor([0.5], requires_grad=True) | ||
outputs = dict(loss=loss, log_vars=losses, num_samples=3) | ||
return outputs | ||
|
||
def val_step(self, data_batch, optimizer, **kwargs): | ||
imgs = data_batch['imgs'] | ||
self.forward(imgs, False) | ||
outputs = dict(results=0.5) | ||
return outputs | ||
|
||
|
||
@pytest.mark.skipif( | ||
not torch.cuda.is_available(), reason='requires CUDA support') | ||
def test_train_model(): | ||
model = ExampleModel() | ||
dataset = ExampleDataset() | ||
cfg = dict( | ||
seed=0, | ||
gpus=1, | ||
gpu_ids=[0], | ||
resume_from=None, | ||
load_from=None, | ||
workflow=[('train', 1)], | ||
total_epochs=5, | ||
evaluation=dict(interval=1, key_indicator='acc'), | ||
data=dict( | ||
samples_per_gpu=1, | ||
workers_per_gpu=0, | ||
val=dict(type='ExampleDataset')), | ||
optimizer=dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0001), | ||
optimizer_config=dict(grad_clip=dict(max_norm=40, norm_type=2)), | ||
lr_config=dict(policy='step', step=[40, 80]), | ||
checkpoint_config=dict(interval=1), | ||
log_level='INFO', | ||
log_config=dict(interval=20, hooks=[dict(type='TextLoggerHook')])) | ||
|
||
with tempfile.TemporaryDirectory() as tmpdir: | ||
# normal train | ||
cfg['work_dir'] = tmpdir | ||
config = Config(cfg) | ||
train_model(model, dataset, config) | ||
|
||
with tempfile.TemporaryDirectory() as tmpdir: | ||
# train with validation | ||
cfg['work_dir'] = tmpdir | ||
config = Config(cfg) | ||
train_model(model, dataset, config, validate=True) | ||
|
||
with tempfile.TemporaryDirectory() as tmpdir: | ||
# train with Fp16OptimizerHook | ||
cfg['work_dir'] = tmpdir | ||
cfg['fp16'] = dict() | ||
config = Config(cfg) | ||
model.fp16_enabled = None | ||
train_model(model, dataset, config) |