-
Notifications
You must be signed in to change notification settings - Fork 140
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
[Feature] Cached dataset to significantly reduce memory footprint dur…
…ing training (#144) This PR adds cache strategy for HumanImageDataset, which can significantly reduce the memory footprint.
- Loading branch information
1 parent
300ebfc
commit 10233de
Showing
6 changed files
with
340 additions
and
34 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,199 @@ | ||
_base_ = ['../_base_/default_runtime.py'] | ||
use_adversarial_train = True | ||
|
||
# evaluate | ||
evaluation = dict(metric=['pa-mpjpe', 'mpjpe']) | ||
# optimizer | ||
optimizer = dict( | ||
backbone=dict(type='Adam', lr=2.5e-4), | ||
head=dict(type='Adam', lr=2.5e-4), | ||
disc=dict(type='Adam', lr=1e-4)) | ||
optimizer_config = dict(grad_clip=None) | ||
# learning policy | ||
lr_config = dict(policy='step', step=[40]) | ||
runner = dict(type='EpochBasedRunner', max_epochs=50) | ||
|
||
log_config = dict( | ||
interval=50, | ||
hooks=[ | ||
dict(type='TextLoggerHook'), | ||
# dict(type='TensorboardLoggerHook') | ||
]) | ||
|
||
img_res = 224 | ||
|
||
# model settings | ||
model = dict( | ||
type='ImageBodyModelEstimator', | ||
backbone=dict( | ||
type='ResNet', | ||
depth=50, | ||
out_indices=[3], | ||
norm_eval=False, | ||
norm_cfg=dict(type='BN', requires_grad=True), | ||
init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet50')), | ||
head=dict( | ||
type='HMRHead', | ||
feat_dim=2048, | ||
smpl_mean_params='data/body_models/smpl_mean_params.npz'), | ||
body_model_train=dict( | ||
type='SMPL', | ||
keypoint_src='smpl_54', | ||
keypoint_dst='smpl_54', | ||
model_path='data/body_models/smpl', | ||
keypoint_approximate=True, | ||
extra_joints_regressor='data/body_models/J_regressor_extra.npy'), | ||
body_model_test=dict( | ||
type='SMPL', | ||
keypoint_src='h36m', | ||
keypoint_dst='h36m', | ||
model_path='data/body_models/smpl', | ||
joints_regressor='data/body_models/J_regressor_h36m.npy'), | ||
convention='smpl_54', | ||
loss_keypoints3d=dict(type='SmoothL1Loss', loss_weight=100), | ||
loss_keypoints2d=dict(type='SmoothL1Loss', loss_weight=10), | ||
loss_vertex=dict(type='L1Loss', loss_weight=2), | ||
loss_smpl_pose=dict(type='MSELoss', loss_weight=3), | ||
loss_smpl_betas=dict(type='MSELoss', loss_weight=0.02), | ||
loss_adv=dict( | ||
type='GANLoss', | ||
gan_type='lsgan', | ||
real_label_val=1.0, | ||
fake_label_val=0.0, | ||
loss_weight=1), | ||
disc=dict(type='SMPLDiscriminator')) | ||
# dataset settings | ||
dataset_type = 'HumanImageDataset' | ||
img_norm_cfg = dict( | ||
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True) | ||
data_keys = [ | ||
'has_smpl', 'smpl_body_pose', 'smpl_global_orient', 'smpl_betas', | ||
'smpl_transl', 'keypoints2d', 'keypoints3d', 'sample_idx' | ||
] | ||
train_pipeline = [ | ||
dict(type='LoadImageFromFile'), | ||
dict(type='RandomChannelNoise', noise_factor=0.4), | ||
dict(type='RandomHorizontalFlip', flip_prob=0.5, convention='smpl_54'), | ||
dict(type='GetRandomScaleRotation', rot_factor=30, scale_factor=0.25), | ||
dict(type='MeshAffine', img_res=224), | ||
dict(type='Normalize', **img_norm_cfg), | ||
dict(type='ImageToTensor', keys=['img']), | ||
dict(type='ToTensor', keys=data_keys), | ||
dict( | ||
type='Collect', | ||
keys=['img', *data_keys], | ||
meta_keys=['image_path', 'center', 'scale', 'rotation']) | ||
] | ||
adv_data_keys = [ | ||
'smpl_body_pose', 'smpl_global_orient', 'smpl_betas', 'smpl_transl' | ||
] | ||
train_adv_pipeline = [dict(type='Collect', keys=adv_data_keys, meta_keys=[])] | ||
test_pipeline = [ | ||
dict(type='LoadImageFromFile'), | ||
dict(type='GetRandomScaleRotation', rot_factor=0, scale_factor=0), | ||
dict(type='MeshAffine', img_res=224), | ||
dict(type='Normalize', **img_norm_cfg), | ||
dict(type='ImageToTensor', keys=['img']), | ||
dict(type='ToTensor', keys=data_keys), | ||
dict( | ||
type='Collect', | ||
keys=['img', *data_keys], | ||
meta_keys=['image_path', 'center', 'scale', 'rotation']) | ||
] | ||
|
||
inference_pipeline = [ | ||
dict(type='MeshAffine', img_res=224), | ||
dict(type='Normalize', **img_norm_cfg), | ||
dict(type='ImageToTensor', keys=['img']), | ||
dict( | ||
type='Collect', | ||
keys=['img', 'sample_idx'], | ||
meta_keys=['image_path', 'center', 'scale', 'rotation']) | ||
] | ||
|
||
cache_files = { | ||
'h36m': 'data/cache/h36m_mosh_train_smpl_54.npz', | ||
'mpi_inf_3dhp': 'data/cache/mpi_inf_3dhp_train_smpl_54.npz', | ||
'lsp': 'data/cache/lsp_train_smpl_54.npz', | ||
'lspet': 'data/cache/lspet_train_smpl_54.npz', | ||
'mpii': 'data/cache/mpii_train_smpl_54.npz', | ||
'coco': 'data/cache/coco_2014_train_smpl_54.npz' | ||
} | ||
data = dict( | ||
samples_per_gpu=32, | ||
workers_per_gpu=2, | ||
train=dict( | ||
type='AdversarialDataset', | ||
train_dataset=dict( | ||
type='MixedDataset', | ||
configs=[ | ||
dict( | ||
type=dataset_type, | ||
dataset_name='h36m', | ||
data_prefix='data', | ||
pipeline=train_pipeline, | ||
convention='smpl_54', | ||
cache_data_path=cache_files['h36m'], | ||
ann_file='h36m_mosh_train.npz'), | ||
dict( | ||
type=dataset_type, | ||
dataset_name='mpi_inf_3dhp', | ||
data_prefix='data', | ||
pipeline=train_pipeline, | ||
convention='smpl_54', | ||
cache_data_path=cache_files['mpi_inf_3dhp'], | ||
ann_file='mpi_inf_3dhp_train.npz'), | ||
dict( | ||
type=dataset_type, | ||
dataset_name='lsp', | ||
data_prefix='data', | ||
pipeline=train_pipeline, | ||
convention='smpl_54', | ||
cache_data_path=cache_files['lsp'], | ||
ann_file='lsp_train.npz'), | ||
dict( | ||
type=dataset_type, | ||
dataset_name='lspet', | ||
data_prefix='data', | ||
pipeline=train_pipeline, | ||
convention='smpl_54', | ||
cache_data_path=cache_files['lspet'], | ||
ann_file='lspet_train.npz'), | ||
dict( | ||
type=dataset_type, | ||
dataset_name='mpii', | ||
data_prefix='data', | ||
pipeline=train_pipeline, | ||
convention='smpl_54', | ||
cache_data_path=cache_files['mpii'], | ||
ann_file='mpii_train.npz'), | ||
dict( | ||
type=dataset_type, | ||
dataset_name='coco', | ||
data_prefix='data', | ||
pipeline=train_pipeline, | ||
convention='smpl_54', | ||
cache_data_path=cache_files['coco'], | ||
ann_file='coco_2014_train.npz'), | ||
], | ||
partition=[0.35, 0.15, 0.1, 0.10, 0.10, 0.2], | ||
), | ||
adv_dataset=dict( | ||
type='MeshDataset', | ||
dataset_name='cmu_mosh', | ||
data_prefix='data', | ||
pipeline=train_adv_pipeline, | ||
ann_file='cmu_mosh.npz')), | ||
test=dict( | ||
type=dataset_type, | ||
body_model=dict( | ||
type='GenderedSMPL', | ||
keypoint_src='h36m', | ||
keypoint_dst='h36m', | ||
model_path='data/body_models/smpl', | ||
joints_regressor='data/body_models/J_regressor_h36m.npy'), | ||
dataset_name='pw3d', | ||
data_prefix='data', | ||
pipeline=test_pipeline, | ||
ann_file='pw3d_test.npz'), | ||
) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.