Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Enhance BatchToSpaceND to support 3D input data #598

Merged
merged 2 commits into from
Jun 19, 2019
Merged
Show file tree
Hide file tree
Changes from 1 commit
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
9 changes: 9 additions & 0 deletions tests/test_backend.py
Original file line number Diff line number Diff line change
Expand Up @@ -2359,6 +2359,15 @@ def test_batch_to_spacend(self):
_ = tf.batch_to_space_nd(input_x, block_size, crop, name=_TFOUTPUT)
self._run_test_case([_OUTPUT], {_INPUT: input_val})

def test_batch_to_space3d(self):
block_size = [2, 2]
crop = [[0, 1], [2, 1]]

input_val = np.random.random_sample([40, 3, 100]).astype(np.float32)
input_x = tf.placeholder(dtype=tf.float32, shape=input_val.shape, name=_TFINPUT) # NHC
_ = tf.batch_to_space_nd(input_x, block_size, crop, name=_TFOUTPUT)
self._run_test_case([_OUTPUT], {_INPUT: input_val})

def test_space_to_batchnd(self):
block_size = [2, 2]
pad = [[0, 1], [2, 1]]
Expand Down
28 changes: 21 additions & 7 deletions tf2onnx/onnx_opset/tensor.py
Original file line number Diff line number Diff line change
Expand Up @@ -1068,20 +1068,26 @@ class BatchToSpace:
def version_1(cls, ctx, node, **kwargs):
# https://www.tensorflow.org/api_docs/cc/class/tensorflow/ops/batch-to-space-n-d.html
# the above link says the data format of input tensor should be (batch, spatial_shape, remaining_shape)
# and we only support 4D here, so the data format is NHWC
# and we only support 3D and 4D here, and the data format is NHC and NHWC
# onnx op "DepthToSpace" does the same work on input tensor except that it works on "C",
# and it only supports NCHW
# T out = BatchToSpaceND(T input, int32 block_shape, int32 crops)
input_tensor = node.inputs[0]
blocksize = node.inputs[1].get_tensor_value()
crops = node.inputs[2].get_tensor_value()

utils.make_sure(len(ctx.get_shape(input_tensor.output[0])) == 4, "only supports 4D for now")
utils.make_sure(len(ctx.get_shape(input_tensor.output[0])) in (4, 3),
"only supports 3D and 4D for now")
utils.make_sure(len(blocksize) == 2 and blocksize[0] == blocksize[1],
"only support same blocksize at different dims")

# NHWC TO CNHW, so onnx op will work on "N" which is the same as tensorflow
trans1 = ctx.make_node("Transpose", input_tensor.output, {"perm": [3, 0, 1, 2]})
if len(ctx.get_shape(input_tensor.output[0])) == 3:
# insert automatically an Unsqueeze op if the input is 3d
unsqz1 = ctx.make_node("Unsqueeze", input_tensor.output, {"axes": [3]})
trans1 = ctx.make_node("Transpose", unsqz1.output, {"perm": [3, 0, 1, 2]})
else:
trans1 = ctx.make_node("Transpose", input_tensor.output, {"perm": [3, 0, 1, 2]})
reorganize_node = ctx.make_node(node.type, trans1.output, attr={"blocksize": blocksize[0]})
trans2 = ctx.make_node("Transpose", reorganize_node.output, {"perm": [1, 2, 3, 0]})

Expand All @@ -1099,11 +1105,19 @@ def version_1(cls, ctx, node, **kwargs):

attr = {"axes": slice_axis, "ends": ends, "starts": starts}
inputs_map = {"data": trans2.output[0], **attr}
kwargs = {**inputs_map, "outputs": node.output}
dtypes = [ctx.get_dtype(node.output[0])]
shapes = [ctx.get_shape(node.output[0])]
ctx.remove_node(node.name)
GraphBuilder(ctx).make_slice(kwargs, name=node.name, dtypes=dtypes, shapes=shapes)
shapes = ctx.get_shape(node.output[0])
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

node.output_shapes and node.output_dtypes?


if len(ctx.get_shape(input_tensor.output[0])) == 3:
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

use a variable denoting ctx.get_shape(input_tensor.output[0]))?

# add a squeeze op to convert output into 3d
kwargs = {**inputs_map}
ctx.remove_node(node.name)
lucienwang1009 marked this conversation as resolved.
Show resolved Hide resolved
slice1 = GraphBuilder(ctx).make_slice(kwargs)
ctx.make_node("Squeeze", [slice1], {"axes": [3]}, outputs=node.output, name=node.name, dtypes=dtypes)
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

also set shapes

else:
kwargs = {**inputs_map, "outputs": node.output}
ctx.remove_node(node.name)
GraphBuilder(ctx).make_slice(kwargs, name=node.name, dtypes=dtypes, shapes=[shapes])
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

keep consistent: shapes=shapes



@tf_op("SpaceToBatchND", onnx_op="SpaceToDepth")
Expand Down