Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Updated workflow #36

Merged
merged 11 commits into from
Jan 29, 2025
Binary file not shown.
Binary file not shown.
70 changes: 70 additions & 0 deletions Franzi/scripts/DEGS1_FRANZI.R
Original file line number Diff line number Diff line change
@@ -0,0 +1,70 @@
#### Script for harmonizing data for NFDI4Health

####Installation of Rmonize and its dependent packages (necessary R Version > 3.4)
# install.packages("Rmonize")
# install.packages("readxl")
# install.packages("tidyverse")
# install.packages("here")
# install.packages("car")
# install.packages("writexl")

#### Load the package in order to conduct
library(Rmonize)
library(readxl)
library(tidyverse)
library(here)
library(car)
library(writexl)


#### Step 0: Name of the study and creation of mock data
dataset_name <- 'DEGS1_FRANZI'
folder_name <- 'Franzi'

source(here::here("create_mock_data", "mock_data_function.R"))
create_mock_data(studyname = dataset_name, folder_name = folder_name)

#### Step 1: Import overall DataSchema
dataschema_1 <- tibble::tibble(readxl::read_excel(here::here(paste0(folder_name, "/rmonize/data_schema/", paste0("Dataschema_", toupper(folder_name), ".xlsx"))), sheet = 1))
dataschema_2 <- tibble::tibble(readxl::read_excel(here::here(paste0(folder_name, "/rmonize/data_schema/", paste0("Dataschema_", toupper(folder_name), ".xlsx"))), sheet = 2))

dataschema <- list(Variables = dataschema_1,
Categories = dataschema_2)

#### Step 2: Import Datasets
#### Import check provided in case the csv file is in German style (delim = ";", dec.point = ",")

input_dataset <- readr::read_csv(here::here(paste0(folder_name, "/data/", paste0("DATA_", dataset_name, ".csv"))))

if(dim(input_dataset)[2] == 1){
input_dataset <- read.csv(here::here(paste0(folder_name, "/data", paste0("DATA_", dataset_name, ".csv"))), sep = ";", dec = ",")
}

#### Step 3: Import Data Dictionaries of the study
dd_var <- tibble::tibble(readxl::read_excel(here::here(paste0(folder_name, "/rmonize/data_dictionary/"), paste0("DD_",dataset_name, ".xlsx")), sheet = 1))
dd_cat <- tibble::tibble(readxl::read_excel(here::here(paste0(folder_name,"/rmonize/data_dictionary/"), paste0("DD_",dataset_name, ".xlsx")), sheet = 2))

dd <- list(Variables = dd_var,
Categories = dd_cat)

#### Step 4: Import prepared Data Processing Elements (DPE)
data_proc_elem <- readxl::read_excel(here::here(paste0(folder_name, "/rmonize/data_proc_elem"), paste0("DPE_",dataset_name, ".xlsx")), sheet = 1)

#### Step 5: Combine input datasets and data dictionaries into a dossier
dataset <- madshapR::data_dict_apply(
dataset = input_dataset,
data_dict = dd)

dossier <- madshapR::dossier_create(dataset_list = list(
dataset))

#### Step 6: Create the harmonized dossier using the dossier, overall dataschema and DPE's
harmonized_dossier <- Rmonize::harmo_process(
dossier,
dataschema,
data_proc_elem)

#### Step 9: Extract and save harmonized data into a pre-set folder
harmonized_dataset <- Rmonize::pooled_harmonized_dataset_create(harmonized_dossier)


70 changes: 70 additions & 0 deletions Franzi/scripts/KARMEN_FRANZI.R
Original file line number Diff line number Diff line change
@@ -0,0 +1,70 @@
#### Script for harmonizing data for NFDI4Health

####Installation of Rmonize and its dependent packages (necessary R Version > 3.4)
# install.packages("Rmonize")
# install.packages("readxl")
# install.packages("tidyverse")
# install.packages("here")
# install.packages("car")
# install.packages("writexl")

#### Load the package in order to conduct
library(Rmonize)
library(readxl)
library(tidyverse)
library(here)
library(car)
library(writexl)


#### Step 0: Name of the study and creation of mock data
dataset_name <- 'KARMEN_FRANZI'
folder_name <- 'Franzi'

source(here::here("create_mock_data", "mock_data_function.R"))
create_mock_data(studyname = dataset_name, folder_name = folder_name)

#### Step 1: Import overall DataSchema
dataschema_1 <- tibble::tibble(readxl::read_excel(here::here(paste0(folder_name, "/rmonize/data_schema/", paste0("Dataschema_", toupper(folder_name), ".xlsx"))), sheet = 1))
dataschema_2 <- tibble::tibble(readxl::read_excel(here::here(paste0(folder_name, "/rmonize/data_schema/", paste0("Dataschema_", toupper(folder_name), ".xlsx"))), sheet = 2))

dataschema <- list(Variables = dataschema_1,
Categories = dataschema_2)

#### Step 2: Import Datasets
#### Import check provided in case the csv file is in German style (delim = ";", dec.point = ",")

input_dataset <- readr::read_csv(here::here(paste0(folder_name, "/data/", paste0("DATA_", dataset_name, ".csv"))))

if(dim(input_dataset)[2] == 1){
input_dataset <- read.csv(here::here(paste0(folder_name, "/data", paste0("DATA_", dataset_name, ".csv"))), sep = ";", dec = ",")
}

#### Step 3: Import Data Dictionaries of the study
dd_var <- tibble::tibble(readxl::read_excel(here::here(paste0(folder_name, "/rmonize/data_dictionary/"), paste0("DD_",dataset_name, ".xlsx")), sheet = 1))
dd_cat <- tibble::tibble(readxl::read_excel(here::here(paste0(folder_name,"/rmonize/data_dictionary/"), paste0("DD_",dataset_name, ".xlsx")), sheet = 2))

dd <- list(Variables = dd_var,
Categories = dd_cat)

#### Step 4: Import prepared Data Processing Elements (DPE)
data_proc_elem <- readxl::read_excel(here::here(paste0(folder_name, "/rmonize/data_proc_elem"), paste0("DPE_",dataset_name, ".xlsx")), sheet = 1)

#### Step 5: Combine input datasets and data dictionaries into a dossier
dataset <- madshapR::data_dict_apply(
dataset = input_dataset,
data_dict = dd)

dossier <- madshapR::dossier_create(dataset_list = list(
dataset))

#### Step 6: Create the harmonized dossier using the dossier, overall dataschema and DPE's
harmonized_dossier <- Rmonize::harmo_process(
dossier,
dataschema,
data_proc_elem)

#### Step 9: Extract and save harmonized data into a pre-set folder
harmonized_dataset <- Rmonize::pooled_harmonized_dataset_create(harmonized_dossier)


Binary file added Ines/rmonize/data_dictionary/DD_DEGS1_INES.xlsx
Binary file not shown.
File renamed without changes.
Binary file added Ines/rmonize/data_proc_elem/DPE_DEGS1_INES.xlsx
Binary file not shown.
File renamed without changes.
File renamed without changes.
70 changes: 70 additions & 0 deletions Ines/scripts/DEGS1_INES.R
Original file line number Diff line number Diff line change
@@ -0,0 +1,70 @@
#### Script for harmonizing data for NFDI4Health

####Installation of Rmonize and its dependent packages (necessary R Version > 3.4)
# install.packages("Rmonize")
# install.packages("readxl")
# install.packages("tidyverse")
# install.packages("here")
# install.packages("car")
# install.packages("writexl")

#### Load the package in order to conduct
library(Rmonize)
library(readxl)
library(tidyverse)
library(here)
library(car)
library(writexl)


#### Step 0: Name of the study and creation of mock data
dataset_name <- 'DEGS1_INES'
folder_name <- 'Ines'

source(here::here("create_mock_data", "mock_data_function.R"))
create_mock_data(studyname = dataset_name, folder_name = folder_name)

#### Step 1: Import overall DataSchema
dataschema_1 <- tibble::tibble(readxl::read_excel(here::here(paste0(folder_name, "/rmonize/data_schema/", paste0("Dataschema_", toupper(folder_name), ".xlsx"))), sheet = 1))
dataschema_2 <- tibble::tibble(readxl::read_excel(here::here(paste0(folder_name, "/rmonize/data_schema/", paste0("Dataschema_", toupper(folder_name), ".xlsx"))), sheet = 2))

dataschema <- list(Variables = dataschema_1,
Categories = dataschema_2)

#### Step 2: Import Datasets
#### Import check provided in case the csv file is in German style (delim = ";", dec.point = ",")

input_dataset <- readr::read_csv(here::here(paste0(folder_name, "/data/", paste0("DATA_", dataset_name, ".csv"))))

if(dim(input_dataset)[2] == 1){
input_dataset <- read.csv(here::here(paste0(folder_name, "/data", paste0("DATA_", dataset_name, ".csv"))), sep = ";", dec = ",")
}

#### Step 3: Import Data Dictionaries of the study
dd_var <- tibble::tibble(readxl::read_excel(here::here(paste0(folder_name, "/rmonize/data_dictionary/"), paste0("DD_",dataset_name, ".xlsx")), sheet = 1))
dd_cat <- tibble::tibble(readxl::read_excel(here::here(paste0(folder_name,"/rmonize/data_dictionary/"), paste0("DD_",dataset_name, ".xlsx")), sheet = 2))

dd <- list(Variables = dd_var,
Categories = dd_cat)

#### Step 4: Import prepared Data Processing Elements (DPE)
data_proc_elem <- readxl::read_excel(here::here(paste0(folder_name, "/rmonize/data_proc_elem"), paste0("DPE_",dataset_name, ".xlsx")), sheet = 1)

#### Step 5: Combine input datasets and data dictionaries into a dossier
dataset <- madshapR::data_dict_apply(
dataset = input_dataset,
data_dict = dd)

dossier <- madshapR::dossier_create(dataset_list = list(
dataset))

#### Step 6: Create the harmonized dossier using the dossier, overall dataschema and DPE's
harmonized_dossier <- Rmonize::harmo_process(
dossier,
dataschema,
data_proc_elem)

#### Step 9: Extract and save harmonized data into a pre-set folder
harmonized_dataset <- Rmonize::pooled_harmonized_dataset_create(harmonized_dossier)


70 changes: 70 additions & 0 deletions Ines/scripts/KARMEN_INES.R
Original file line number Diff line number Diff line change
@@ -0,0 +1,70 @@
#### Script for harmonizing data for NFDI4Health

####Installation of Rmonize and its dependent packages (necessary R Version > 3.4)
# install.packages("Rmonize")
# install.packages("readxl")
# install.packages("tidyverse")
# install.packages("here")
# install.packages("car")
# install.packages("writexl")

#### Load the package in order to conduct
library(Rmonize)
library(readxl)
library(tidyverse)
library(here)
library(car)
library(writexl)


#### Step 0: Name of the study and creation of mock data
dataset_name <- 'KARMEN_INES'
folder_name <- 'Ines'

source(here::here("create_mock_data", "mock_data_function.R"))
create_mock_data(studyname = dataset_name, folder_name = folder_name)

#### Step 1: Import overall DataSchema
dataschema_1 <- tibble::tibble(readxl::read_excel(here::here(paste0(folder_name, "/rmonize/data_schema/", paste0("Dataschema_", toupper(folder_name), ".xlsx"))), sheet = 1))
dataschema_2 <- tibble::tibble(readxl::read_excel(here::here(paste0(folder_name, "/rmonize/data_schema/", paste0("Dataschema_", toupper(folder_name), ".xlsx"))), sheet = 2))

dataschema <- list(Variables = dataschema_1,
Categories = dataschema_2)

#### Step 2: Import Datasets
#### Import check provided in case the csv file is in German style (delim = ";", dec.point = ",")

input_dataset <- readr::read_csv(here::here(paste0(folder_name, "/data/", paste0("DATA_", dataset_name, ".csv"))))

if(dim(input_dataset)[2] == 1){
input_dataset <- read.csv(here::here(paste0(folder_name, "/data", paste0("DATA_", dataset_name, ".csv"))), sep = ";", dec = ",")
}

#### Step 3: Import Data Dictionaries of the study
dd_var <- tibble::tibble(readxl::read_excel(here::here(paste0(folder_name, "/rmonize/data_dictionary/"), paste0("DD_",dataset_name, ".xlsx")), sheet = 1))
dd_cat <- tibble::tibble(readxl::read_excel(here::here(paste0(folder_name,"/rmonize/data_dictionary/"), paste0("DD_",dataset_name, ".xlsx")), sheet = 2))

dd <- list(Variables = dd_var,
Categories = dd_cat)

#### Step 4: Import prepared Data Processing Elements (DPE)
data_proc_elem <- readxl::read_excel(here::here(paste0(folder_name, "/rmonize/data_proc_elem"), paste0("DPE_",dataset_name, ".xlsx")), sheet = 1)

#### Step 5: Combine input datasets and data dictionaries into a dossier
dataset <- madshapR::data_dict_apply(
dataset = input_dataset,
data_dict = dd)

dossier <- madshapR::dossier_create(dataset_list = list(
dataset))

#### Step 6: Create the harmonized dossier using the dossier, overall dataschema and DPE's
harmonized_dossier <- Rmonize::harmo_process(
dossier,
dataschema,
data_proc_elem)

#### Step 9: Extract and save harmonized data into a pre-set folder
harmonized_dataset <- Rmonize::pooled_harmonized_dataset_create(harmonized_dossier)


Binary file added Tracy/rmonize/data_dictionary/DD_DEGS1_TRACY.xlsx
Binary file not shown.
Binary file added Tracy/rmonize/data_proc_elem/DPE_DEGS1_TRACY.xlsx
Binary file not shown.
70 changes: 70 additions & 0 deletions Tracy/scripts/DEGS1_TRACY.R
Original file line number Diff line number Diff line change
@@ -0,0 +1,70 @@
#### Script for harmonizing data for NFDI4Health

####Installation of Rmonize and its dependent packages (necessary R Version > 3.4)
# install.packages("Rmonize")
# install.packages("readxl")
# install.packages("tidyverse")
# install.packages("here")
# install.packages("car")
# install.packages("writexl")

#### Load the package in order to conduct
library(Rmonize)
library(readxl)
library(tidyverse)
library(here)
library(car)
library(writexl)


#### Step 0: Name of the study and creation of mock data
dataset_name <- 'DEGS1_TRACY'
folder_name <- 'Tracy'

source(here::here("create_mock_data", "mock_data_function.R"))
create_mock_data(studyname = dataset_name, folder_name = folder_name)

#### Step 1: Import overall DataSchema
dataschema_1 <- tibble::tibble(readxl::read_excel(here::here(paste0(folder_name, "/rmonize/data_schema/", paste0("Dataschema_", toupper(folder_name), ".xlsx"))), sheet = 1))
dataschema_2 <- tibble::tibble(readxl::read_excel(here::here(paste0(folder_name, "/rmonize/data_schema/", paste0("Dataschema_", toupper(folder_name), ".xlsx"))), sheet = 2))

dataschema <- list(Variables = dataschema_1,
Categories = dataschema_2)

#### Step 2: Import Datasets
#### Import check provided in case the csv file is in German style (delim = ";", dec.point = ",")

input_dataset <- readr::read_csv(here::here(paste0(folder_name, "/data/", paste0("DATA_", dataset_name, ".csv"))))

if(dim(input_dataset)[2] == 1){
input_dataset <- read.csv(here::here(paste0(folder_name, "/data", paste0("DATA_", dataset_name, ".csv"))), sep = ";", dec = ",")
}

#### Step 3: Import Data Dictionaries of the study
dd_var <- tibble::tibble(readxl::read_excel(here::here(paste0(folder_name, "/rmonize/data_dictionary/"), paste0("DD_",dataset_name, ".xlsx")), sheet = 1))
dd_cat <- tibble::tibble(readxl::read_excel(here::here(paste0(folder_name,"/rmonize/data_dictionary/"), paste0("DD_",dataset_name, ".xlsx")), sheet = 2))

dd <- list(Variables = dd_var,
Categories = dd_cat)

#### Step 4: Import prepared Data Processing Elements (DPE)
data_proc_elem <- readxl::read_excel(here::here(paste0(folder_name, "/rmonize/data_proc_elem"), paste0("DPE_",dataset_name, ".xlsx")), sheet = 1)

#### Step 5: Combine input datasets and data dictionaries into a dossier
dataset <- madshapR::data_dict_apply(
dataset = input_dataset,
data_dict = dd)

dossier <- madshapR::dossier_create(dataset_list = list(
dataset))

#### Step 6: Create the harmonized dossier using the dossier, overall dataschema and DPE's
harmonized_dossier <- Rmonize::harmo_process(
dossier,
dataschema,
data_proc_elem)

#### Step 9: Extract and save harmonized data into a pre-set folder
harmonized_dataset <- Rmonize::pooled_harmonized_dataset_create(harmonized_dossier)


Loading