Skip to content
This repository has been archived by the owner on Oct 11, 2024. It is now read-only.

Commit

Permalink
[Bugfix][Kernel] allow non-power-of-2 for prefix prefill with alibi (v…
Browse files Browse the repository at this point in the history
  • Loading branch information
DefTruth authored and robertgshaw2-redhat committed May 19, 2024
1 parent 01ad752 commit f64e4e4
Show file tree
Hide file tree
Showing 2 changed files with 267 additions and 17 deletions.
243 changes: 242 additions & 1 deletion tests/kernels/test_prefix_prefill.py
Original file line number Diff line number Diff line change
@@ -1,3 +1,4 @@
import math
import random
import time

Expand All @@ -6,11 +7,12 @@
from xformers import ops as xops
from xformers.ops.fmha.attn_bias import BlockDiagonalCausalFromBottomRightMask

from vllm.attention.backends.xformers import _make_alibi_bias
from vllm.attention.ops.prefix_prefill import context_attention_fwd

NUM_HEADS = [64]
NUM_QUERIES_PER_KV = [1, 8, 64]
HEAD_SIZES = [128, 96]
HEAD_SIZES = [128, 96, 24]
DTYPES = [torch.float16]
CUDA_DEVICES = [
f"cuda:{i}" for i in range(1 if torch.cuda.device_count() == 1 else 2)
Expand Down Expand Up @@ -211,3 +213,242 @@ def test_contexted_kv_attention(
print(f"xformers Time: {(end_time - start_time)*1000:.2f} ms")
output_ref = output_ref.reshape(output.shape)
assert torch.allclose(output_ref, output, atol=1e-6, rtol=0)


@pytest.mark.parametrize("num_heads", NUM_HEADS)
@pytest.mark.parametrize("num_queries_per_kv", NUM_QUERIES_PER_KV)
@pytest.mark.parametrize("head_size", HEAD_SIZES)
@pytest.mark.parametrize("dtype", DTYPES)
@pytest.mark.parametrize("device", CUDA_DEVICES)
@torch.inference_mode()
def test_contexted_kv_attention_alibi(
num_heads: int,
num_queries_per_kv: int,
head_size: int,
dtype: torch.dtype,
device: str,
) -> None:
random.seed(0)
torch.manual_seed(0)
if torch.cuda.is_available():
torch.cuda.manual_seed(0)
torch.set_default_device(device)

# Need this, otherwise when we capture the graph the process
# for GPU 1 would run on both GPU0 and GPU1 and things would hang
#
# see also similar issue: https://github.com/Dao-AILab/flash-attention/issues/523
torch.cuda.set_device(device)

def _get_alibi_slopes(total_num_heads: int) -> torch.Tensor:
# Fork from: vllm/vllm/model_executor/models/bloom.py#L44
closest_power_of_2 = 2**math.floor(math.log2(total_num_heads))
base = torch.tensor(
2**(-(2**-(math.log2(closest_power_of_2) - 3))),
dtype=torch.float32,
)
powers = torch.arange(1, 1 + closest_power_of_2, dtype=torch.int32)
slopes = torch.pow(base, powers)

if closest_power_of_2 != total_num_heads:
extra_base = torch.tensor(
2**(-(2**-(math.log2(2 * closest_power_of_2) - 3))),
dtype=torch.float32,
)
num_remaining_heads = min(closest_power_of_2,
total_num_heads - closest_power_of_2)
extra_powers = torch.arange(start=1,
end=1 + 2 * num_remaining_heads,
step=2,
dtype=torch.int32)
slopes = torch.cat(
[slopes, torch.pow(extra_base, extra_powers)], dim=0)
return slopes

alibi_slopes = _get_alibi_slopes(num_heads).to(device)

MAX_SEQ_LEN = 1024
MAX_CTX_LEN = 1024
BS = 10
cache_size = 640
block_size = 32
max_block_per_request = 64
query_lens = [random.randint(16, MAX_SEQ_LEN) for _ in range(BS)]
ctx_lens = [random.randint(16, MAX_CTX_LEN) for _ in range(BS)]
seq_lens = [a + b for a, b in zip(query_lens, ctx_lens)]
num_kv_heads = num_heads // num_queries_per_kv

num_tokens = sum(query_lens)
query = torch.empty(num_tokens, num_heads, head_size, dtype=dtype)
query.uniform_(-1e-3, 1e-3)
output = torch.empty(num_tokens, num_heads, head_size, dtype=dtype)

kv = torch.empty(sum(seq_lens), 2, num_kv_heads, head_size, dtype=dtype)
kv.uniform_(-1e-3, 1e-3)
key, value = kv.unbind(dim=1)

k_cache = torch.zeros(cache_size,
block_size,
num_kv_heads,
head_size,
dtype=dtype)
v_cache = torch.zeros(cache_size,
block_size,
num_kv_heads,
head_size,
dtype=dtype)
k = torch.zeros(sum(query_lens), num_kv_heads, head_size, dtype=dtype)
v = torch.zeros(sum(query_lens), num_kv_heads, head_size, dtype=dtype)
values = torch.arange(0, cache_size, dtype=torch.long)
values = values[torch.randperm(cache_size)]
block_table = values[:BS * max_block_per_request].view(
BS, max_block_per_request)
b_seq_len = torch.tensor(seq_lens, dtype=torch.long)
b_ctx_len = torch.tensor(ctx_lens, dtype=torch.long)
b_start_loc = torch.cumsum(torch.tensor([0] + query_lens[:-1],
dtype=torch.long),
dim=0)
max_input_len = MAX_SEQ_LEN
# copy kv to cache
b_seq_start_loc = torch.cumsum(torch.tensor([0] + seq_lens[:-1],
dtype=torch.long),
dim=0)
for i in range(BS):
for j in range(query_lens[i]):
k[b_start_loc[i] + j].copy_(key[b_seq_start_loc[i] + b_ctx_len[i] +
j])
v[b_start_loc[i] + j].copy_(value[b_seq_start_loc[i] +
b_ctx_len[i] + j])
cur_ctx = 0
block_id = 0
while cur_ctx < b_ctx_len[i]:
start_loc = b_seq_start_loc[i] + cur_ctx
if cur_ctx + block_size > b_ctx_len[i]:
end_loc = b_seq_start_loc[i] + b_ctx_len[i]
else:
end_loc = start_loc + block_size
start_slot = block_table[i, block_id] * block_size
end_slot = start_slot + end_loc - start_loc
k_cache.view(-1, num_kv_heads,
head_size)[start_slot:end_slot].copy_(
key[start_loc:end_loc])
v_cache.view(-1, num_kv_heads,
head_size)[start_slot:end_slot].copy_(
value[start_loc:end_loc])
cur_ctx += block_size
block_id += 1
# transpose K_cache[num_blocks, block_size, num_kv_heads, head_size]
# to K_cache[num_blocks, num_kv_heads, head_size/8, block_size, 8]
k_cache = k_cache.view(-1, block_size, num_kv_heads, head_size // 8,
8).permute(0, 2, 3, 1, 4).contiguous()
# transpose V_cache[num_blocks, block_size, num_kv_heads, head_size]
# to V_cache[num_blocks, num_kv_heads, head_size, block_size]
v_cache = v_cache.view(-1, block_size, num_kv_heads,
head_size).permute(0, 2, 3, 1).contiguous()

# Warm up the Triton kernel by calling it once before actually measuring
# generation time
context_attention_fwd(query,
k,
v,
output,
k_cache,
v_cache,
block_table,
b_start_loc,
b_seq_len,
b_ctx_len,
max_input_len,
alibi_slopes=alibi_slopes)
torch.cuda.synchronize()
start_time = time.time()
context_attention_fwd(query,
k,
v,
output,
k_cache,
v_cache,
block_table,
b_start_loc,
b_seq_len,
b_ctx_len,
max_input_len,
alibi_slopes=alibi_slopes)
torch.cuda.synchronize()
end_time = time.time()
print(f"triton Time: {(end_time - start_time)*1000:.2f} ms")
scale = float(1.0 / (head_size**0.5))

# NOTE(DefTruth): In order to reuse _make_alibi_bias function,
# we have to pad query tensor before MQA/GQA expanding.
if query.shape[0] != key.shape[0]:
query_pad = torch.empty(sum(seq_lens),
num_heads,
head_size,
dtype=dtype)
query_pad.uniform_(-1e-3, 1e-3)
seq_start = 0
query_start = 0
for i, (query_len, seq_len) in enumerate(zip(query_lens, seq_lens)):
seq_end = seq_start + seq_len
query_end = query_start + query_len
query_pad[seq_start:seq_end, ...] = torch.cat([
torch.zeros(
seq_len - query_len, num_heads, head_size, dtype=dtype),
query[query_start:query_end, ...]
],
dim=0)
seq_start += seq_len
query_start += query_len
query = query_pad

if num_kv_heads != num_heads:
# As of Nov 2023, xformers only supports MHA. For MQA/GQA,
# project the key and value tensors to the desired number of
# heads.
#
# see also: vllm/model_executor/layers/attention.py
query = query.view(query.shape[0], num_kv_heads, num_queries_per_kv,
query.shape[-1])
key = key[:, :, None, :].expand(key.shape[0], num_kv_heads,
num_queries_per_kv, key.shape[-1])
value = value[:, :,
None, :].expand(value.shape[0], num_kv_heads,
num_queries_per_kv, value.shape[-1])

query = query.unsqueeze(0)
key = key.unsqueeze(0)
value = value.unsqueeze(0)

attn_bias = _make_alibi_bias(alibi_slopes, num_kv_heads, dtype, seq_lens)
output_ref = torch.empty_like(output)
seq_start = 0
query_start = 0
start_time = time.time()
# Attention with alibi slopes.
# FIXME(DefTruth): Because xformers does not support dynamic sequence
# lengths with custom attention bias, we process each prompt one by
# one. This is inefficient, especially when we have many short prompts.
# modified from: vllm/attention/backends/xformers.py#L343
for i, (query_len, seq_len) in enumerate(zip(query_lens, seq_lens)):
seq_end = seq_start + seq_len
query_end = query_start + query_len
out = xops.memory_efficient_attention_forward(query[:,
seq_start:seq_end],
key[:,
seq_start:seq_end],
value[:,
seq_start:seq_end],
attn_bias=attn_bias[i],
p=0.0,
scale=scale)
out = out.view_as(query[:, seq_start:seq_end]).view(
seq_len, num_heads, head_size)
output_ref[query_start:query_end, ...].copy_(out[seq_len - query_len:,
...])
seq_start += seq_len
query_start += query_len
torch.cuda.synchronize()
end_time = time.time()
print(f"xformers Time: {(end_time - start_time)*1000:.2f} ms")
assert torch.allclose(output_ref, output, atol=1e-6, rtol=0)
41 changes: 25 additions & 16 deletions vllm/attention/ops/prefix_prefill.py
Original file line number Diff line number Diff line change
Expand Up @@ -472,7 +472,8 @@ def _fwd_kernel_alibi(
stride_v_cache_bl,
num_queries_per_kv: int,
BLOCK_M: tl.constexpr,
BLOCK_DMODEL: tl.constexpr,
BLOCK_DMODEL: tl.constexpr, # head size
BLOCK_DMODEL_PADDED: tl.constexpr, # head size padded to a power of 2
BLOCK_N: tl.constexpr,
):
# attn_bias[]
Expand All @@ -493,21 +494,24 @@ def _fwd_kernel_alibi(

# initialize offsets
offs_n = tl.arange(0, BLOCK_N)
offs_d = tl.arange(0, BLOCK_DMODEL)
offs_d = tl.arange(0, BLOCK_DMODEL_PADDED)
offs_m = start_m * BLOCK_M + tl.arange(0, BLOCK_M)
off_q = (
(cur_batch_in_all_start_index + offs_m[:, None]) * stride_qbs +
cur_head * stride_qh + offs_d[None, :] * stride_qd)

q = tl.load(
Q + off_q,
mask=offs_m[:, None] < cur_batch_seq_len - cur_batch_ctx_len,
other=0.0)
dim_mask = tl.where(
tl.arange(0, BLOCK_DMODEL_PADDED) < BLOCK_DMODEL, 1, 0).to(tl.int1)

q = tl.load(Q + off_q,
mask=dim_mask[None, :] &
(offs_m[:, None] < cur_batch_seq_len - cur_batch_ctx_len),
other=0.0)

# # initialize pointer to m and l
m_i = tl.zeros([BLOCK_M], dtype=tl.float32) - float("inf")
l_i = tl.zeros([BLOCK_M], dtype=tl.float32)
acc = tl.zeros([BLOCK_M, BLOCK_DMODEL], dtype=tl.float32)
acc = tl.zeros([BLOCK_M, BLOCK_DMODEL_PADDED], dtype=tl.float32)

alibi_slope = tl.load(Alibi_slopes + cur_head)
alibi_start_q = tl.arange(
Expand All @@ -532,8 +536,9 @@ def _fwd_kernel_alibi(
offs_d[None, :] * stride_v_cache_d +
(start_n + offs_n[:, None]) % block_size * stride_v_cache_bl)
k = tl.load(K_cache + off_k,
mask=(start_n + offs_n[None, :]) < cur_batch_ctx_len,
other=0.0)
mask=dim_mask[:, None] &
((start_n + offs_n[None, :]) < cur_batch_ctx_len),
other=0.0) # [D,N]

qk = tl.zeros([BLOCK_M, BLOCK_N], dtype=tl.float32)
qk += tl.dot(q, k)
Expand Down Expand Up @@ -567,7 +572,8 @@ def _fwd_kernel_alibi(
acc = acc * acc_scale[:, None]
# update acc
v = tl.load(V_cache + off_v,
mask=(start_n + offs_n[:, None]) < cur_batch_ctx_len,
mask=dim_mask[None, :] &
((start_n + offs_n[:, None]) < cur_batch_ctx_len),
other=0.0)

p = p.to(v.dtype)
Expand Down Expand Up @@ -600,8 +606,9 @@ def _fwd_kernel_alibi(
# -- compute qk ----
k = tl.load(k_ptrs +
(cur_batch_in_all_start_index + start_n) * stride_kbs,
mask=(start_n + offs_n[None, :]) <
cur_batch_seq_len - cur_batch_ctx_len,
mask=dim_mask[:, None] &
((start_n + offs_n[None, :]) <
cur_batch_seq_len - cur_batch_ctx_len),
other=0.0)

qk = tl.zeros([BLOCK_M, BLOCK_N], dtype=tl.float32)
Expand Down Expand Up @@ -637,8 +644,9 @@ def _fwd_kernel_alibi(
# update acc
v = tl.load(v_ptrs +
(cur_batch_in_all_start_index + start_n) * stride_vbs,
mask=(start_n + offs_n[:, None]) <
cur_batch_seq_len - cur_batch_ctx_len,
mask=dim_mask[None, :] &
((start_n + offs_n[:, None]) <
cur_batch_seq_len - cur_batch_ctx_len),
other=0.0)

p = p.to(v.dtype)
Expand All @@ -656,7 +664,8 @@ def _fwd_kernel_alibi(
out_ptrs = Out + off_o
tl.store(out_ptrs,
acc,
mask=offs_m[:, None] < cur_batch_seq_len - cur_batch_ctx_len)
mask=dim_mask[None, :] &
(offs_m[:, None] < cur_batch_seq_len - cur_batch_ctx_len))
return

@torch.inference_mode()
Expand Down Expand Up @@ -690,7 +699,6 @@ def context_attention_fwd(q,

num_warps = 8 if Lk <= 64 else 8
if alibi_slopes is not None:
assert Lk == Lk_padded
_fwd_kernel_alibi[grid](
q,
k,
Expand Down Expand Up @@ -735,6 +743,7 @@ def context_attention_fwd(q,
num_queries_per_kv=num_queries_per_kv,
BLOCK_M=BLOCK,
BLOCK_DMODEL=Lk,
BLOCK_DMODEL_PADDED=Lk_padded,
BLOCK_N=BLOCK,
num_warps=num_warps,
num_stages=1,
Expand Down

0 comments on commit f64e4e4

Please sign in to comment.