- Java 21
- Apache Maven
- Docker
- GCP account with Dataflow enabled
- GCS bucket accessible for writes
- gcloud CLI
First, clone the googlecloud-to-neo4j
template locally:
git clone https://github.com/GoogleCloudPlatform/DataflowTemplates.git
NOTE: If you want to align with the template version currently deployed in your GCP region, run the following commands after cloning the
DataflowTemplates
repository (here the region is set toeurope-west8
):tag=$(gsutil ls gs://dataflow-templates-europe-west8/ | grep -E '\d{4}-\d{2}-\d{2}' | sort -V -r | head -n 1 | cut -d/ -f4) git checkout "${tag}"
Run the following to locally cache the template:
mvn --file DataflowTemplates/pom.xml --also-make --projects v2/googlecloud-to-neo4j install -DskipTests -Djib.skip
Then, go back to this project and run:
mvn package
You should then be able to run:
java -jar target/local-runner-1.0-SNAPSHOT-shaded.jar --help
And see some output similar to:
Usage: local-dataflow [-hV] -b=<bucket> [-i=<checkInterval>] -p=<project>
-r=<region> -s=<spec> [-t=<maxTimeout>]
[-c=<countQueryChecks>]...
-b, --bucket=<bucket> GCS bucket
-c, --count-query-check=<countQueryChecks>
Count query checks (syntax: "<count>:<Cypher count
query>" with a single "count" column)
-h, --help Show this help message and exit.
-i, --interval-check-duration=<checkInterval>
Execution completion check interval
-p, --project=<project> GCP project
-r, --region=<region> GCP region
-s, --spec=<spec> Path to local googlecloud-to-neo4j spec file
-t, --max-timeout=<maxTimeout>
Execution timeout
-V, --version Print version information and exit.
For the guide, you will need:
- to have built the CLI locally (see previous section)
- to know your GCP project name
- to pick a GCS bucket name accessible for writes
- a running Docker Daemon
- to have set up Google Application Default Credentials
Create a local spec file, let's save it somewhere (the rest of the guide assumes /path/to/spec.json
):
{
"sources": [
{
"type": "text",
"name": "persons",
"ordered_field_names": "id",
"data": [
["person0"],
["person1"],
["person2"],
["person3"],
["person4"]
]
}
],
"targets": [
{
"node": {
"source": "persons",
"name": "person import",
"mode": "merge",
"mappings": {
"labels": [
"\"Person\""
],
"properties": {
"keys": [
{"id": "id"}
]
}
}
}
}
]
}
If not already set up google authentication through gcloud CLI, run
gcloud auth application-default login
Assuming the current location is the root of this project, now run:
java -jar ./target/local-runner-1.0-SNAPSHOT-shaded.jar \
--project=<YOUR GCP PROJECT> \
--region=<YOUR GCP REGION> \
--bucket=<YOUR GCS BUCKET> \
--spec=/path/to/spec.json
And that's it! A local Neo4j instance is going to be started via Docker and the pipeline will run directly on your machine. All logs are sent to standard output directly. Once the execution is done, the container is shut down.
You can also specify Cypher query checks to make sure the data is created in the way you expect:
java -jar ./target/local-runner-1.0-SNAPSHOT-shaded.jar \
--project=<YOUR GCP PROJECT> \
--region=<YOUR GCP REGION> \
--bucket=<YOUR GCS BUCKET> \
--spec=/path/to/spec.json \
--count-query-check="5:MATCH (p:Person) RETURN count(p) AS count" \
--count-query-check="0:MATCH (p:Person) WHERE NOT p.id STARTS WITH 'person' RETURN count(p) AS count"