Skip to content

One contribution code to 5th solution in Kaggle competition Predicting molecular propreties

Notifications You must be signed in to change notification settings

mrtunguyen/Kaggle_predicting_molecular_properties

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

3 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

This folder contains materials to reproduce the submissions files that contributed to the final solution which finished in 5th place of the kaggle competition Predicting Molecular Properties

See the complete details of our solution here

Idea

The architecture is based on the paper Graph Networks as a Universal Machine Learning Framework for Molecules and Crystals with some changes to adapt to the use cases.

Requirement

  1. Hardware
  • CPU: 12 cores
  • Memory: 32 GB
  • GPU: 1 GTX 2080 Ti
  1. Software:
  • CUDA 10.0 CuDNN 7.4
  • Anaconda Python 3.7 2019.03
  • pytorch==1.1.0
  • pytorch_geometric
  • openbabel, rdkit

How to train?

  • Generate data graph for every molecule:
    python data/data.py --data_dir=kaggle/data/csv --split_dir=kaggle/data/split --graph_dir=kaggle/data/graph

  • Training:

    • first model: python train.py --out_dir=kaggle/output --model=model1 --optim=adam
    • second model: python train.py --out_dir=kaggle/output --model=model2 --optim=adam
    • third model: python train.py --out_dir=kaggle/output --model=model1 --optim=ranger

How to make prediction?

  • python submit.py --out_dir=kaggle/output/submit --model=model1 --checkpoint=kaggle/output/checkpoints/checkpoint_01.pth

Credit

Credit to Cher Keng Heng for his starter kit code.

About

One contribution code to 5th solution in Kaggle competition Predicting molecular propreties

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages