Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Fix fuzz 1 failure: incorrect reduction of BigInt #246

Merged
merged 1 commit into from
Jul 2, 2023

Conversation

mratsim
Copy link
Owner

@mratsim mratsim commented Jul 2, 2023

From the Ethereum Foundation sponsored fuzzing by @guidovranken (linked to #54),
fromBig can lead to incorrectly reduced field elements.

This is because classic Montgomery reduction can reduce inputs from the range [0, 4p²) -> [0, p) but this is not the case with the no-carry optimization from Gnark (https://hackmd.io/@gnark/modular_multiplication and https://eprint.iacr.org/2022/1400.pdf section 2)

In practice getMont and fromBig are internal-only procedures that only deserialized well-formed inputs that have been pre-checked in protocols:

  • # General case
    var t{.noInit.}: matchingBigInt(BLS12_381)
    t.unmarshal(src, bigEndian)
    t.limbs[t.limbs.len-1] = t.limbs[t.limbs.len-1] and (MaxWord shr 3) # The first 3 bytes contain metadata to mask out
    if bool(t >= BLS12_381.Mod()):
    return cttBLS_CoordinateGreaterOrEqualThanModulus
    var x{.noInit.}: Fp[BLS12_381]
    x.fromBig(t)
  • # General case
    var t{.noInit.}: matchingBigInt(BLS12_381)
    t.unmarshal(src.toOpenArray(0, 48-1), bigEndian)
    t.limbs[t.limbs.len-1] = t.limbs[t.limbs.len-1] and (MaxWord shr 3) # The first 3 bytes contain metadata to mask out
    if bool(t >= BLS12_381.Mod()):
    return cttBLS_CoordinateGreaterOrEqualThanModulus
    var x{.noInit.}: Fp2[BLS12_381]
    x.c1.fromBig(t)
    t.unmarshal(src.toOpenArray(48, 96-1), bigEndian)
    if bool(t >= BLS12_381.Mod()):
    return cttBLS_CoordinateGreaterOrEqualThanModulus
    x.c0.fromBig(t)
  • func parseRawUint(
    dst: var Fp[BN254_Snarks],
    src: openarray[byte]): CttEVMStatus =
    ## Parse an unsigned integer from its canonical
    ## big-endian or little-endian unsigned representation
    ## And store it into a field element.
    ##
    ## Return false if the integer is larger than the field modulus.
    ## Returns true on success.
    var big {.noInit.}: BigInt[254]
    big.unmarshal(src, bigEndian)
    if not bool(big < Mod(BN254_Snarks)):
    return cttEVM_IntLargerThanModulus
    dst.fromBig(big)
    return cttEVM_Success

and for large inputs, we use redc2xMont + multMont:

  • # Reduces modulo p and output in Montgomery domain
    when m == 1:
    output[i].redc2x(big2x)
    output[i].mres.mulMont(
    output[i].mres,
    Fp[Field.C].getR3ModP(),
    Fp[Field.C])
    else:
    output[i].coords[j].redc2x(big2x)
    output[i].coords[j].mres.mulMont(
    output[i].coords[j].mres,
    Fp[Field.C].getR3ModP(),
    Fp[Field.C])
  • # 7. x = OS2IP(OKM) mod r
    # We reduce mod r via Montgomery reduction, instead of bigint division
    # as constant-time division works bits by bits (384 bits) while
    # Montgomery reduction works word by word, quadratically so 6*6 = 36 on 64-bit CPUs.
    # With R ≡ (2^WordBitWidth)^numWords (mod M)
    # redc2xMont(a) computes a/R
    # mulMont(a, b) computes a.b.R⁻¹
    var seckeyDbl{.noInit.}: BigInt[2 * BLS12_381.getCurveOrderBitWidth()]
    seckeyDbl.unmarshal(okm, bigEndian)
    # secretKey.reduce(seckeyDbl, BLS12_381.getCurveOrder())
    secretKey.limbs.redc2xMont(seckeyDbl.limbs, # seckey/R
    BLS12_381.getCurveOrder().limbs, Fr[BLS12_381].getNegInvModWord(),
    Fr[BLS12_381].getSpareBits())
    secretKey.limbs.mulMont(secretKey.limbs, Fr[BLS12_381].getR2modP().limbs, # (seckey/R) * R² * R⁻¹ = seckey
    BLS12_381.getCurveOrder().limbs, Fr[BLS12_381].getNegInvModWord(),
    Fr[BLS12_381].getSpareBits())

or full reduction:

  • # Conversion to Montgomery can auto-reduced by up to M*R
    # if we use redc2xMont (a/R) and montgomery multiplication by R³
    # For now, we call explicit reduction as it can handle all sizes.
    # TODO: explicit reduction uses constant-time division which is **very** expensive
    # TODO: fix https://github.com/mratsim/constantine/issues/241
    if a.len != M.len:
    let t = allocStackArray(SecretWord, L)
    t.LimbsViewMut.reduce(a.view(), aBits, M.view(), mBits)
    rMont.LimbsViewMut.getMont(LimbsViewConst t, M.view(), LimbsViewConst r2.view(), m0ninv, mBits)
    else:
    rMont.LimbsViewMut.getMont(a.view(), M.view(), LimbsViewConst r2.view(), m0ninv, mBits)

However there is one protocol case where getMont is used, in ECMUL (EIP-198):

  • var smod{.noInit.}: Fr[BN254_Snarks]
    var s{.noInit.}: BigInt[256]
    s.unmarshal(padded.toOpenArray(64,95), bigEndian)
    when true:
    # The spec allows s to be bigger than the curve order r and the field modulus p.
    # As, elliptic curve are a cyclic group mod r, we can reduce modulo r and get the same result.
    # This allows to use windowed endomorphism acceleration
    # which is 31.5% faster than plain windowed scalar multiplication
    # at the low cost of a modular reduction.
    # Due to mismatch between the BigInt[256] input and the rest being BigInt[254]
    # we use the low-level getMont instead of 'fromBig'
    getMont(smod.mres.limbs, s.limbs,
    Fr[BN254_Snarks].fieldMod().limbs,
    Fr[BN254_Snarks].getR2modP().limbs,
    Fr[BN254_Snarks].getNegInvModWord(),
    Fr[BN254_Snarks].getSpareBits())
    P.scalarMul(smod.toBig())
    else:
    P.scalarMul(s)

Perf

The impact on BN254 is a slowdown from 10ns to 17ns (with Clang, worse with GCC)

The impact on BLS12-381 is a slowdown from 23ns to 39ns (with Clang, worse with GCC)

Most of the slowdown is due to classic Montgomery reduction not having an assembly implementation.

However, that conversion is not in the hot path of any protocol, most protocols that need to deal with a large amount of deserialization allow caching, for example in case of Ethereum validator public keys. And 99% of the time is spend in computing the square root of compressed keys/signatures.

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Projects
None yet
Development

Successfully merging this pull request may close these issues.

1 participant