Skip to content
This repository has been archived by the owner on Jul 14, 2021. It is now read-only.

Commit

Permalink
Reordered sierra P set
Browse files Browse the repository at this point in the history
  • Loading branch information
mossr committed May 3, 2021
1 parent e424b87 commit 2a5f6c2
Show file tree
Hide file tree
Showing 2 changed files with 2 additions and 2 deletions.
4 changes: 2 additions & 2 deletions chapters/cem_variants.tex
Original file line number Diff line number Diff line change
Expand Up @@ -282,13 +282,13 @@ \subsection{Test Objective Function Generation}\label{sec:sierra}
\end{align*}
We chose points $\mat{P}$ to fan out the clustered minima relative to the center defined by $\mathbf{\widetilde{\vec{\mu}}}$:
\begin{align*}
\mat{P} &= \Big\{[0, 0], [1, 1], [2, 0], [3, 1], [0, 2], [1, 3]\Big\}
\mat{P} &= \Big\{[0, 0], [1, 1], [2, 0], [0, 2], [3, 1], [1, 3]\Big\}
\end{align*}
The vector $\vec{s}$ is used to control the $\pm$ distance to create an `s' shape comprised of minima, using the standard deviation $\sigma$:
$\vec{s} = [+\sigma, -\sigma]$.
We set the following default parameters: standard deviation $\sigma=3$, spread rate $\eta=6$, and cluster distance $\delta=2$.
We can also control if the local minima clusters ``decay'', thus making those local minima less distinct (where $\text{decay} \in \{0, 1\})$.
Using the parameters $\langle \mathbf{\widetilde{\vec{\mu}}}, \mathbf{\widetilde{\mat{\Sigma}}}, \mat{G}, \mat{P}, \vec{s} \rangle$, we can define the sierra mixture model with the set of component means $\vec{\mu}_\mathcal{S}$, component covariances $\mat{\Sigma}_\mathcal{S}$, and weights $\vec{w}_\mathcal{S}$ as:
Using the parameters $\langle \mathbf{\widetilde{\vec{\mu}}}, \mathbf{\widetilde{\mat{\Sigma}}}, \mat{G}, \mat{P}, \vec{s}, \eta, \text{decay} \rangle$, we can define the sierra mixture model with the set of component means $\vec{\mu}_\mathcal{S}$, component covariances $\mat{\Sigma}_\mathcal{S}$, and weights $\vec{w}_\mathcal{S}$ as:
\begin{align*}
\vec{\mu}_\mathcal{S} &= \Big\{ \vec{g} + s\vec{p}_i + \widetilde{\vec{\mu}} \mid \vec{g} \in \mat{G}, s \in \vec{s}, \vec{p}_i \in \mat{P} \Big\}\tag{component means}\\
\mat{\Sigma}_\mathcal{S} &= \Big\{ \widetilde{\mat{\Sigma}} \cdot i^{\text{decay}}/\eta \mid i \in \{1,\ldots,|\mat{P}|\} \Big\}\tag{component covariances}\\
Expand Down
Binary file modified moss-mscs-thesis.pdf
Binary file not shown.

0 comments on commit 2a5f6c2

Please sign in to comment.