Skip to content

Commit

Permalink
add stablelm from PR StableLM support ggerganov#3586
Browse files Browse the repository at this point in the history
  • Loading branch information
mmngays committed Oct 21, 2023
1 parent df51a6e commit 1030368
Show file tree
Hide file tree
Showing 3 changed files with 720 additions and 2 deletions.
199 changes: 199 additions & 0 deletions convert-stablelm-hf-to-gguf.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,199 @@
#!/usr/bin/env python3
# HF stablelm --> gguf conversion

from __future__ import annotations

import argparse
import json
import os
import struct
import sys
from pathlib import Path
from typing import Any

import numpy as np
import torch
from transformers import AutoTokenizer # type: ignore[import]
try:
from safetensors import safe_open
except ImportError:
print("Please install `safetensors` python package")
sys.exit(1)

if 'NO_LOCAL_GGUF' not in os.environ:
sys.path.insert(1, str(Path(__file__).parent / 'gguf-py' / 'gguf'))
import gguf


def parse_args() -> argparse.Namespace:
parser = argparse.ArgumentParser(description="Convert a stablelm model to a GGML compatible file")
parser.add_argument(
"--vocab-only", action="store_true",
help="extract only the vocab",
)
parser.add_argument(
"--outfile", type=Path,
help="path to write to; default: based on input",
)
parser.add_argument(
"model", type=Path,
help="directory containing model file, or model file itself (*.bin)",
)
parser.add_argument(
"ftype", type=int, choices=[0, 1], default=1, nargs='?',
help="output format - use 0 for float32, 1 for float16",
)
return parser.parse_args()

args = parse_args()

dir_model = args.model
ftype = args.ftype
if not dir_model.is_dir():
print(f'Error: {args.model} is not a directory', file = sys.stderr)
sys.exit(1)

# possible tensor data types
# ftype == 0 -> float32
# ftype == 1 -> float16

# map from ftype to string
ftype_str = ["f32", "f16"]

if args.outfile is not None:
fname_out = args.outfile
else:
# output in the same directory as the model by default
fname_out = dir_model / f'ggml-model-{ftype_str[ftype]}.gguf'

print("gguf: loading model "+dir_model.name)

with open(dir_model / "config.json", "r", encoding="utf-8") as f:
hparams = json.load(f)

if hparams["architectures"][0] != "StableLMEpochForCausalLM":
print("Model architecture not supported: " + hparams["architectures"][0])

sys.exit()


ARCH=gguf.MODEL_ARCH.STABLELM
gguf_writer = gguf.GGUFWriter(fname_out, gguf.MODEL_ARCH_NAMES[ARCH])

print("gguf: get model metadata")

block_count = hparams["num_hidden_layers"]

gguf_writer.add_name(dir_model.name)
gguf_writer.add_context_length(hparams["max_position_embeddings"])
gguf_writer.add_embedding_length(hparams["hidden_size"])
gguf_writer.add_block_count(block_count)
gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
gguf_writer.add_rope_dimension_count(int(hparams["rope_pct"]*(hparams["hidden_size"] // hparams["num_attention_heads"])))
gguf_writer.add_head_count(hparams["num_attention_heads"])
gguf_writer.add_parallel_residual(hparams["use_parallel_residual"] if "use_parallel_residual" in hparams else True)
gguf_writer.add_layer_norm_eps(1e-5)

# TOKENIZATION

print("gguf: get tokenizer metadata")

tokens: list[bytearray] = []
scores: list[float] = []
toktypes: list[int] = []

# gpt2 tokenizer
gguf_writer.add_tokenizer_model("gpt2")

print("gguf: get gpt2 tokenizer vocab")

# ref: https://github.com/cmp-nct/ggllm.cpp/blob/master/falcon_convert.py
tokenizer = AutoTokenizer.from_pretrained(dir_model)

# The number of tokens in tokenizer.json can differ from the expected vocab size.
# This causes downstream issues with mismatched tensor sizes when running the inference
vocab_size = hparams.get("vocab_size", len(tokenizer.vocab))
assert max(tokenizer.vocab.values()) < vocab_size

reverse_vocab = {id: encoded_tok for encoded_tok, id in tokenizer.vocab.items()}

for i in range(vocab_size):
tokens.append(reverse_vocab[i] if i in reverse_vocab else f"[PAD{i}]")
scores.append(0.0) # dummy
toktypes.append(gguf.TokenType.NORMAL)

gguf_writer.add_token_list(tokens)
gguf_writer.add_token_scores(scores)
gguf_writer.add_token_types(toktypes)

special_vocab = gguf.SpecialVocab(dir_model, load_merges = True)
special_vocab.add_to_gguf(gguf_writer)

# TENSORS

tensor_map = gguf.get_tensor_name_map(ARCH,block_count)

# tensor info
print("gguf: get tensor metadata")

part_names = iter(("model.safetensors",))

for part_name in part_names:
if args.vocab_only:
break
print("gguf: loading model part '" + part_name + "'")
ctx = safe_open(dir_model / part_name, framework="pt", device="cpu")
with ctx as model_part:
for name in model_part.keys():
data = model_part.get_tensor(name)

# we don't need these
if name.endswith(".attention.masked_bias") or name.endswith(".attention.bias") or name.endswith(".attention.rotary_emb.inv_freq"):
continue

old_dtype = data.dtype

# convert any unsupported data types to float32
if data.dtype != torch.float16 and data.dtype != torch.float32:
data = data.to(torch.float32)

data = data.squeeze().numpy()

# map tensor names
new_name = tensor_map.get_name(name, try_suffixes = (".weight", ".bias"))
if new_name is None:
print("Can not map tensor '" + name + "'")
sys.exit()

n_dims = len(data.shape)
data_dtype = data.dtype

# if f32 desired, convert any float16 to float32
if ftype == 0 and data_dtype == np.float16:
data = data.astype(np.float32)

# TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
if ftype == 1 and data_dtype == np.float16 and n_dims == 1:
data = data.astype(np.float32)

# if f16 desired, convert any float32 2-dim weight tensors to float16
if ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
data = data.astype(np.float16)

print(new_name + ", n_dims = " + str(n_dims) + ", " + str(old_dtype) + " --> " + str(data.dtype))

gguf_writer.add_tensor(new_name, data)


print("gguf: write header")
gguf_writer.write_header_to_file()
print("gguf: write metadata")
gguf_writer.write_kv_data_to_file()
if not args.vocab_only:
print("gguf: write tensors")
gguf_writer.write_tensors_to_file()

gguf_writer.close()

print(f"gguf: model successfully exported to '{fname_out}'")
print("")
19 changes: 17 additions & 2 deletions gguf-py/gguf/gguf.py
Original file line number Diff line number Diff line change
Expand Up @@ -91,7 +91,7 @@ class MODEL_ARCH(IntEnum):
BERT : int = auto()
BLOOM : int = auto()
PLAMO : int = auto()

STABLELM : int = auto()

class MODEL_TENSOR(IntEnum):
TOKEN_EMBD : int = auto()
Expand Down Expand Up @@ -131,6 +131,7 @@ class MODEL_TENSOR(IntEnum):
MODEL_ARCH.BERT: "bert",
MODEL_ARCH.BLOOM: "bloom",
MODEL_ARCH.PLAMO: "plamo",
MODEL_ARCH.STABLELM: "stablelm",
}

TENSOR_NAMES: dict[MODEL_TENSOR, str] = {
Expand Down Expand Up @@ -330,7 +331,21 @@ class MODEL_TENSOR(IntEnum):
MODEL_TENSOR.FFN_DOWN,
MODEL_TENSOR.FFN_UP,
],
# TODO
MODEL_ARCH.STABLELM: [
MODEL_TENSOR.TOKEN_EMBD,
MODEL_TENSOR.OUTPUT_NORM,
MODEL_TENSOR.OUTPUT,
MODEL_TENSOR.ROPE_FREQS,
MODEL_TENSOR.ATTN_NORM,
MODEL_TENSOR.ATTN_Q,
MODEL_TENSOR.ATTN_K,
MODEL_TENSOR.ATTN_V,
MODEL_TENSOR.ATTN_OUT,
MODEL_TENSOR.FFN_NORM,
MODEL_TENSOR.FFN_GATE,
MODEL_TENSOR.FFN_DOWN,
MODEL_TENSOR.FFN_UP,
], # TODO
}

# tensors that will not be serialized
Expand Down
Loading

0 comments on commit 1030368

Please sign in to comment.