Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Style package with new {mlr.styler} package #626

Merged
merged 3 commits into from
May 20, 2021
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
7 changes: 4 additions & 3 deletions R/BenchmarkResult.R
Original file line number Diff line number Diff line change
Expand Up @@ -270,7 +270,7 @@ BenchmarkResult = R6Class("BenchmarkResult",
tab = insert_named(tab, scores)

cns = c("uhash", "nr", "resample_result", "task_id", "learner_id", "resampling_id", "iters",
"warnings", "errors", "params", ids(measures))
"warnings", "errors", "params", ids(measures))
cns = intersect(cns, names(tab))
tab[, cns, with = FALSE]
},
Expand Down Expand Up @@ -302,10 +302,11 @@ BenchmarkResult = R6Class("BenchmarkResult",
learner_phashes = NULL

filter_if_not_null = function(column, hashes) {
if (is.null(hashes))
if (is.null(hashes)) {
fact
else
} else {
fact[unique(hashes), on = column, nomatch = NULL]
}
}


Expand Down
11 changes: 8 additions & 3 deletions R/Learner.R
Original file line number Diff line number Diff line change
Expand Up @@ -244,8 +244,9 @@ Learner = R6Class("Learner",
}

pdata = learner_predict(self, task, row_ids)
if (is.null(pdata))
if (is.null(pdata)) {
return(NULL)
}

as_prediction(check_prediction_data(pdata))
},
Expand All @@ -269,8 +270,9 @@ Learner = R6Class("Learner",
newdata = as.data.table(assert_data_frame(newdata, min.rows = 1L))

if (is.null(task)) {
if (is.null(self$state$train_task))
if (is.null(self$state$train_task)) {
stopf("No task stored, and no task provided")
}
task = self$state$train_task$clone()
} else {
task = assert_task(as_task(task, clone = TRUE))
Expand Down Expand Up @@ -414,7 +416,10 @@ Learner = R6Class("Learner",
switch(name,
.param_set = value$clone(deep = TRUE),
fallback = if (is.null(value)) NULL else value$clone(deep = TRUE),
state = { value$log = copy(value$log); value },
state = {
value$log = copy(value$log)
value
},
value
)
}
Expand Down
9 changes: 7 additions & 2 deletions R/LearnerClassifDebug.R
Original file line number Diff line number Diff line change
Expand Up @@ -152,8 +152,13 @@ LearnerClassifDebug = R6Class("LearnerClassifDebug", inherit = LearnerClassif,
if (!is.null(pv$predict_missing)) {
ii = sample.int(n, n * pv$predict_missing)
prob = switch(missing_type,
"na" = { prob[ii, ] = NA_real_; prob },
"omit" = { prob[ii,, drop = FALSE] }
"na" = {
prob[ii, ] = NA_real_
prob
},
"omit" = {
prob[ii, , drop = FALSE]
}
)
}
}
Expand Down
3 changes: 2 additions & 1 deletion R/MeasureDebug.R
Original file line number Diff line number Diff line change
Expand Up @@ -51,8 +51,9 @@ MeasureDebug = R6Class("MeasureDebug",
private = list(
.score = function(prediction, ...) {
na_ratio = self$param_set$get_values()$na_ratio
if (na_ratio > runif(1L))
if (na_ratio > runif(1L)) {
return(NA_integer_)
}
length(prediction$row_ids)
}
)
Expand Down
2 changes: 1 addition & 1 deletion R/PredictionDataClassif.R
Original file line number Diff line number Diff line change
Expand Up @@ -90,7 +90,7 @@ c.PredictionDataClassif = function(..., keep_duplicates = TRUE) {
if (!keep_duplicates) {
keep = !duplicated(tab, by = "row_ids", fromLast = TRUE)
tab = tab[keep]
prob = prob[keep,, drop = FALSE]
prob = prob[keep, , drop = FALSE]
}

result = as.list(tab)
Expand Down
11 changes: 7 additions & 4 deletions R/ResampleResult.R
Original file line number Diff line number Diff line change
Expand Up @@ -138,7 +138,7 @@ ResampleResult = R6Class("ResampleResult",
set(tab, j = "learner_id", value = ids(tab[["learner"]]))
set(tab, j = "resampling_id", value = ids(tab[["resampling"]]))
setcolorder(tab, c("task", "task_id", "learner", "learner_id", "resampling", "resampling_id",
"iteration", "prediction"))
"iteration", "prediction"))
}

if (conditions) {
Expand Down Expand Up @@ -213,8 +213,9 @@ ResampleResult = R6Class("ResampleResult",
task = function(rhs) {
assert_ro_binding(rhs)
tab = private$.data$tasks(private$.view)
if (nrow(tab) == 0L)
if (nrow(tab) == 0L) {
return(NULL)
}
tab$task[[1L]]
},

Expand All @@ -224,8 +225,9 @@ ResampleResult = R6Class("ResampleResult",
learner = function(rhs) {
assert_ro_binding(rhs)
tab = private$.data$learners(private$.view, states = FALSE)
if (nrow(tab) == 0L)
if (nrow(tab) == 0L) {
return(NULL)
}
tab$learner[[1L]]
},

Expand All @@ -234,8 +236,9 @@ ResampleResult = R6Class("ResampleResult",
resampling = function(rhs) {
assert_ro_binding(rhs)
tab = private$.data$resamplings(private$.view)
if (nrow(tab) == 0L)
if (nrow(tab) == 0L) {
return(NULL)
}
tab$resampling[[1L]]
},

Expand Down
3 changes: 2 additions & 1 deletion R/ResamplingHoldout.R
Original file line number Diff line number Diff line change
Expand Up @@ -72,7 +72,8 @@ ResamplingHoldout = R6Class("ResamplingHoldout", inherit = Resampling,

.combine = function(instances) {
list(train = do.call(c, map(instances, "train")), test = do.call(c, map(instances, "test")))
})
}
)
)

#' @include mlr_resamplings.R
Expand Down
14 changes: 8 additions & 6 deletions R/ResultData.R
Original file line number Diff line number Diff line change
Expand Up @@ -295,18 +295,20 @@ ResultData = R6Class("ResultData",
#' Returns `NULL` if the [ResultData] is empty.
task_type = function() {
tab = self$data$tasks
if (nrow(tab))
if (nrow(tab)) {
tab$task[[1L]]$task_type
else
} else {
NULL
}
}
),

private = list(
get_view_index = function(view) {
if (is.null(view))
if (is.null(view)) {
return(TRUE)
self$data$fact[list(view), on = "uhash", nomatch = NULL, which = TRUE]
}
self$data$fact[list(view), on = "uhash", nomatch = NULL, which = TRUE]
},

deep_clone = function(name, value) {
Expand Down Expand Up @@ -382,8 +384,8 @@ reassemble_learners = function(learners, states = NULL, param_vals = NULL) {
learners = lapply(learners, function(l) l$clone(deep = TRUE))

if (!is.null(states)) {
Map(function(l, s) {
l$state = s
Map(function(l, s) {
l$state = s
}, l = learners, s = states)
}

Expand Down
4 changes: 2 additions & 2 deletions R/Task.R
Original file line number Diff line number Diff line change
Expand Up @@ -351,8 +351,8 @@ Task = R6Class("Task",

ci = self$col_info[list(keep_cols), on = "id"]
data = do.call(data.table, Map(auto_convert,
value = as.list(data)[ci$id],
id = ci$id, type = ci$type, levels = ci$levels))
value = as.list(data)[ci$id],
id = ci$id, type = ci$type, levels = ci$levels))

data = as_data_backend(data, primary_key = pk)
} else {
Expand Down
2 changes: 1 addition & 1 deletion R/TaskClassif_penguins.R
Original file line number Diff line number Diff line change
Expand Up @@ -35,7 +35,7 @@ load_task_penguins = function() {
penguins = as.data.table(palmerpenguins::penguins)
setnames(penguins,
old = c("bill_length_mm", "bill_depth_mm", "flipper_length_mm", "body_mass_g"),
new = c("bill_length", "bill_depth", "flipper_length", "body_mass")
new = c("bill_length", "bill_depth", "flipper_length", "body_mass")
Copy link
Member Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

@lorenzwalthert DO you have an idea why this alignment is not honoured?

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Because spacing is only honoured one level deep. This is two level deep (function call in function call). Sorry, styler can't do this. Use strict = FALSE if you want to preserve one more more space here (but it comes with other implications as shown in the dedicated vignette).

)

b = as_data_backend(penguins)
Expand Down
2 changes: 1 addition & 1 deletion R/TaskGeneratorMoons.R
Original file line number Diff line number Diff line change
Expand Up @@ -58,7 +58,7 @@ TaskGeneratorMoons = R6Class("TaskGeneratorMoons",

data.table(
y = factor(rep(c("A", "B"), c(n1, n2)), levels = c("A", "B")),
x1 = 5 * cos(x) + rnorm(n, mean = mu, sd = sigma),
x1 = 5 * cos(x) + rnorm(n, mean = mu, sd = sigma),
x2 = 10 * sin(x) + rnorm(n, mean = mu, sd = sigma)
)
},
Expand Down
2 changes: 1 addition & 1 deletion R/TaskSupervised.R
Original file line number Diff line number Diff line change
Expand Up @@ -19,7 +19,7 @@
#' @export
#' @examples
#' TaskSupervised$new("penguins", task_type = "classif", backend = palmerpenguins::penguins,
#' target = "species")
#' target = "species")
TaskSupervised = R6Class("TaskSupervised", inherit = Task,
public = list(

Expand Down
3 changes: 2 additions & 1 deletion R/as_prediction_data.R
Original file line number Diff line number Diff line change
Expand Up @@ -35,8 +35,9 @@ as_prediction_data.list = function(x, task, row_ids = task$row_ids, check = TRUE
assert_names(names(x), subset.of = predict_types)

x$row_ids = row_ids
if (inherits(task, "TaskSupervised"))
if (inherits(task, "TaskSupervised")) {
x$truth = task$truth(row_ids)
}

pdata = new_prediction_data(x, task_type = task$task_type)
if (check) {
Expand Down
5 changes: 3 additions & 2 deletions R/assertions.R
Original file line number Diff line number Diff line change
Expand Up @@ -175,8 +175,9 @@ assert_measure = function(measure, task = NULL, learner = NULL, .var.name = vnam
#' @rdname mlr_assertions
assert_measures = function(measures, task = NULL, learner = NULL, .var.name = vname(measures)) {
lapply(measures, assert_measure, task = task, learner = learner, .var.name = .var.name)
if (anyDuplicated(ids(measures)))
if (anyDuplicated(ids(measures))) {
stopf("Measures need to have unique IDs")
}
invisible(measures)
}

Expand Down Expand Up @@ -281,7 +282,7 @@ assert_prediction_count = function(actual, expected, type) {

assert_row_sums = function(prob) {
for (i in seq_row(prob)) {
x = prob[i,, drop = TRUE]
x = prob[i, , drop = TRUE]
n_missing = count_missing(x)
if (n_missing > 0L && n_missing < length(x)) {
stopf("Probabilities for observation %i are partly missing", i)
Expand Down
57 changes: 43 additions & 14 deletions R/auto_convert.R
Original file line number Diff line number Diff line change
Expand Up @@ -5,21 +5,35 @@ mlr_reflections$auto_converters = ee = new.env(parent = emptyenv())

## from: logical
ee[["logical___integer"]] =
function(value, type, levels) { as.integer(value) }
function(value, type, levels) {
as.integer(value)
}
ee[["logical___numeric"]] =
function(value, type, levels) { as.double(value) }
function(value, type, levels) {
as.double(value)
}
ee[["logical___character"]] =
function(value, type, levels) { as.character(value) }
function(value, type, levels) {
as.character(value)
}
ee[["logical___factor"]] =
function(value, type, levels) { factor(value, levels = union(levels, value), ordered = FALSE) }
function(value, type, levels) {
factor(value, levels = union(levels, value), ordered = FALSE)
}
ee[["logical___ordered"]] =
function(value, type, levels) { if (all(value %in% c(NA_character_, levels))) factor(value, levels = levels, ordered = TRUE) else NULL }
function(value, type, levels) {
if (all(value %in% c(NA_character_, levels))) factor(value, levels = levels, ordered = TRUE) else NULL
}
ee[["logical___POSIXct"]] =
function(value, type, levels) { if (allMissing(value)) .POSIXct(value, tz = "") else value }
function(value, type, levels) {
if (allMissing(value)) .POSIXct(value, tz = "") else value
}

## from: integer
ee[["integer___logical"]] =
function(value, type, levels) { if (test_integerish(value, lower = 0L, upper = 1L)) as.logical(value) else value }
function(value, type, levels) {
if (test_integerish(value, lower = 0L, upper = 1L)) as.logical(value) else value
}
ee[["integer___numeric"]] =
ee[["logical___numeric"]]
ee[["integer___character"]] =
Expand All @@ -35,7 +49,9 @@ ee[["integer___POSIXct"]] =
ee[["numeric___logical"]] =
ee[["integer___logical"]]
ee[["numeric___integer"]] =
function(value, type, levels) { if (test_integerish(value)) as.integer(value) else value }
function(value, type, levels) {
if (test_integerish(value)) as.integer(value) else value
}
ee[["numeric___character"]] =
ee[["logical___character"]]
ee[["numeric___factor"]] =
Expand All @@ -47,27 +63,40 @@ ee[["numeric___POSIXct"]] =

## from: character
ee[["character___logical"]] =
function(value, type, levels) { if (all(value %in% c(NA_character_, "TRUE", "FALSE", "true", "false", "T", "F"))) as.logical(value) else value }
function(value, type, levels) {
if (all(value %in% c(NA_character_, "TRUE", "FALSE", "true", "false", "T", "F"))) as.logical(value) else value
}
ee[["character___integer"]] =
function(value, type, levels) { if (allMissing(value)) as.integer(value) else value }
function(value, type, levels) {
if (allMissing(value)) as.integer(value) else value
}
ee[["character___numeric"]] =
function(value, type, levels) { if (allMissing(value)) as.double(value) else value }
function(value, type, levels) {
if (allMissing(value)) as.double(value) else value
}
ee[["character___factor"]] =
ee[["logical___factor"]]
ee[["character___ordered"]] =
ee[["logical___ordered"]]
ee[["character___POSIXct"]] =
function(value, type, levels) { x = try(as.POSIXct(value, ""), silent = TRUE); if (inherits(x, "try-error")) value else x }
function(value, type, levels) {
x = try(as.POSIXct(value, ""), silent = TRUE)
if (inherits(x, "try-error")) value else x
}

## from: factor
ee[["factor___logical"]] =
ee[["character___logical"]]
ee[["factor___character"]] =
ee[["logical___character"]]
ee[["factor___factor"]] =
function(value, type, levels) { factor(value, levels = union(levels, levels(value)), ordered = FALSE) }
function(value, type, levels) {
factor(value, levels = union(levels, levels(value)), ordered = FALSE)
}
ee[["factor___ordered"]] =
function(value, type, levels) { if (all(levels(value) %in% levels)) factor(value, levels = levels, ordered = TRUE) else NULL }
function(value, type, levels) {
if (all(levels(value) %in% levels)) factor(value, levels = levels, ordered = TRUE) else NULL
}
ee[["factor___POSIXct"]] =
ee[["character___POSIXct"]]

Expand Down
3 changes: 1 addition & 2 deletions R/benchmark_grid.R
Original file line number Diff line number Diff line change
Expand Up @@ -32,9 +32,8 @@
#'
#' # manual instantiation (not suited for a fair comparison of learners!)
#' Map(function(task, resampling) {
#' resampling$instantiate(task)
#' resampling$instantiate(task)
#' }, task = grid$task, resampling = grid$resampling)
#'
#' \dontrun{
#' benchmark(grid)
#' }
Expand Down
18 changes: 9 additions & 9 deletions R/bibentries.R
Original file line number Diff line number Diff line change
Expand Up @@ -15,15 +15,15 @@ bibentries = c(

bischl_2012 = bibentry("article",
title = "Resampling Methods for Meta-Model Validation with Recommendations for Evolutionary Computation",
author = "Bernd Bischl and Olaf Mersmann and Heike Trautmann and Claus Weihs",
year = "2012",
month = "jun",
journal = "Evolutionary Computation",
publisher = "MIT Press - Journals",
volume = "20",
number = "2",
pages = "249--275",
doi = "10.1162/evco_a_00069"
author = "Bernd Bischl and Olaf Mersmann and Heike Trautmann and Claus Weihs",
year = "2012",
month = "jun",
journal = "Evolutionary Computation",
publisher = "MIT Press - Journals",
volume = "20",
number = "2",
pages = "249--275",
doi = "10.1162/evco_a_00069"
),

breiman_1984 = bibentry("book",
Expand Down
3 changes: 2 additions & 1 deletion R/default_measures.R
Original file line number Diff line number Diff line change
Expand Up @@ -17,8 +17,9 @@
#' default_measures("classif")
#' default_measures("regr")
default_measures = function(task_type) {
if (is.null(task_type))
if (is.null(task_type)) {
return(list())
}
assert_choice(task_type, names(mlr_reflections$default_measures))
keys = mlr_reflections$default_measures[[task_type]]
mlr_measures$mget(keys)
Expand Down
Loading