Skip to content

Assignments for newbies (students of Prof. Gao)

Notifications You must be signed in to change notification settings

mingaoo/Assignments

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

3 Commits
 
 
 
 
 
 
 
 

Repository files navigation

Assignments

Assignments for newbies (students of Prof. Gao)

Assignment 101

练习内容:熟练 KNN(K 邻近)算法的思想和编码实现

详细说明:利用 python 语言实现 KNN 算法,并对收集的鸢尾花数据进行分类。鸢尾花数据 分为两部分,一部分为 104 个带类别标记的样本组成的训练集,另一部分为不带类别标记的 46 个样本组成的测试集,要求对 46 个不带类别标记的样本进行预测。压缩包内含4个文件, 分别为 data-description.txt, training.txt, test.txt,knn.py。knn.py 为需要你来完成的代码。

输入与输出:输入训练集与测试集数据(见文本文件),输出分类正确率,召回率,F1

注意:请尽量不要调用第三方的直接实现,如scikit-learn

Deadline:2017-10-31

About

Assignments for newbies (students of Prof. Gao)

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%