-
Notifications
You must be signed in to change notification settings - Fork 388
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
* 🆕 Added CaBuAr dataset * 🆕 Added CaBuAr datamodule * 🔨 Added CaBuAr datamodule test * 🔨 Corrected CaBuAr typing and datamodule test * 🔨 updated test, corrected docs, minor fixes to dataset and datamodule * 🔨 CaBuAr test fixes
- Loading branch information
Showing
13 changed files
with
564 additions
and
1 deletion.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -217,6 +217,11 @@ BioMassters | |
|
||
.. autoclass:: BioMassters | ||
|
||
CaBuAr | ||
^^^^^^ | ||
|
||
.. autoclass:: CaBuAr | ||
|
||
ChaBuD | ||
^^^^^^ | ||
|
||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,16 @@ | ||
model: | ||
class_path: SemanticSegmentationTask | ||
init_args: | ||
loss: "ce" | ||
model: "unet" | ||
backbone: "resnet18" | ||
in_channels: 24 | ||
num_classes: 2 | ||
num_filters: 1 | ||
ignore_index: null | ||
data: | ||
class_path: CaBuArDataModule | ||
init_args: | ||
batch_size: 2 | ||
dict_kwargs: | ||
root: "tests/data/cabuar" |
Binary file not shown.
Binary file not shown.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,69 @@ | ||
#!/usr/bin/env python3 | ||
|
||
# Copyright (c) Microsoft Corporation. All rights reserved. | ||
# Licensed under the MIT License. | ||
|
||
import hashlib | ||
import os | ||
import random | ||
|
||
import h5py | ||
import numpy as np | ||
|
||
# Sentinel-2 is 12-bit with range 0-4095 | ||
SENTINEL2_MAX = 4096 | ||
|
||
NUM_CHANNELS = 12 | ||
NUM_CLASSES = 2 | ||
SIZE = 32 | ||
|
||
np.random.seed(0) | ||
random.seed(0) | ||
|
||
filenames = ['512x512.hdf5', 'chabud_test.h5'] | ||
fold_mapping = {'train': [1, 2, 3, 4], 'val': [0], 'test': ['chabud']} | ||
|
||
uris = [ | ||
'feb08801-64b1-4d11-a3fc-0efaad1f4274_0', | ||
'e4d4dbcb-dd92-40cf-a7fe-fda8dd35f367_1', | ||
'9fc8c1f4-1858-47c3-953e-1dc8b179a', | ||
'3a1358a2-6155-445a-a269-13bebd9741a8_0', | ||
'2f8e659c-f457-4527-a57f-bffc3bbe0baa_0', | ||
'299ee670-19b1-4a76-bef3-34fd55580711_1', | ||
'05cfef86-3e27-42be-a0cb-a61fe2f89e40_0', | ||
'0328d12a-4ad8-4504-8ac5-70089db10b4e_1', | ||
'04800581-b540-4f9b-9df8-7ee433e83f46_0', | ||
'108ae2a9-d7d6-42f7-b89a-90bb75c23ccb_0', | ||
'29413474-04b8-4bb1-8b89-fd640023d4a6_0', | ||
'43f2e60a-73b4-4f33-b99e-319d892fcab4_0', | ||
] | ||
folds = random.choices(fold_mapping['train'], k=4) + [0] * 4 + ['chabud'] * 4 | ||
files = ['512x512.hdf5'] * 8 + ['chabud_test.h5'] * 4 | ||
|
||
# Remove old data | ||
for filename in filenames: | ||
if os.path.exists(filename): | ||
os.remove(filename) | ||
|
||
# Create dataset file | ||
data = np.random.randint( | ||
SENTINEL2_MAX, size=(SIZE, SIZE, NUM_CHANNELS), dtype=np.uint16 | ||
) | ||
gt = np.random.randint(NUM_CLASSES, size=(SIZE, SIZE, 1), dtype=np.uint16) | ||
|
||
for filename, uri, fold in zip(files, uris, folds): | ||
with h5py.File(filename, 'a') as f: | ||
sample = f.create_group(uri) | ||
sample.attrs.create( | ||
name='fold', data=np.int64(fold) if fold != 'chabud' else fold | ||
) | ||
sample.create_dataset | ||
sample.create_dataset('pre_fire', data=data) | ||
sample.create_dataset('post_fire', data=data) | ||
sample.create_dataset('mask', data=gt) | ||
|
||
# Compute checksums | ||
for filename in filenames: | ||
with open(filename, 'rb') as f: | ||
md5 = hashlib.md5(f.read()).hexdigest() | ||
print(f'{filename} md5: {md5}') |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,92 @@ | ||
# Copyright (c) Microsoft Corporation. All rights reserved. | ||
# Licensed under the MIT License. | ||
|
||
import os | ||
from itertools import product | ||
from pathlib import Path | ||
|
||
import matplotlib.pyplot as plt | ||
import pytest | ||
import torch | ||
import torch.nn as nn | ||
from _pytest.fixtures import SubRequest | ||
from pytest import MonkeyPatch | ||
|
||
from torchgeo.datasets import CaBuAr, DatasetNotFoundError | ||
|
||
pytest.importorskip('h5py', minversion='3.6') | ||
|
||
|
||
class TestCaBuAr: | ||
@pytest.fixture( | ||
params=product([CaBuAr.all_bands, CaBuAr.rgb_bands], ['train', 'val', 'test']) | ||
) | ||
def dataset( | ||
self, monkeypatch: MonkeyPatch, tmp_path: Path, request: SubRequest | ||
) -> CaBuAr: | ||
data_dir = os.path.join('tests', 'data', 'cabuar') | ||
urls = ( | ||
os.path.join(data_dir, '512x512.hdf5'), | ||
os.path.join(data_dir, 'chabud_test.h5'), | ||
) | ||
monkeypatch.setattr(CaBuAr, 'urls', urls) | ||
bands, split = request.param | ||
root = tmp_path | ||
transforms = nn.Identity() | ||
return CaBuAr( | ||
root=root, | ||
split=split, | ||
bands=bands, | ||
transforms=transforms, | ||
download=True, | ||
checksum=True, | ||
) | ||
|
||
def test_getitem(self, dataset: CaBuAr) -> None: | ||
x = dataset[0] | ||
assert isinstance(x, dict) | ||
assert isinstance(x['image'], torch.Tensor) | ||
assert isinstance(x['mask'], torch.Tensor) | ||
|
||
# Image tests | ||
assert x['image'].ndim == 3 | ||
|
||
if dataset.bands == CaBuAr.rgb_bands: | ||
assert x['image'].shape[0] == 2 * 3 | ||
elif dataset.bands == CaBuAr.all_bands: | ||
assert x['image'].shape[0] == 2 * 12 | ||
|
||
# Mask tests: | ||
assert x['mask'].ndim == 2 | ||
|
||
def test_len(self, dataset: CaBuAr) -> None: | ||
assert len(dataset) == 4 | ||
|
||
def test_already_downloaded(self, dataset: CaBuAr) -> None: | ||
CaBuAr(root=dataset.root, download=True) | ||
|
||
def test_not_downloaded(self, tmp_path: Path) -> None: | ||
with pytest.raises(DatasetNotFoundError, match='Dataset not found'): | ||
CaBuAr(tmp_path) | ||
|
||
def test_invalid_bands(self) -> None: | ||
with pytest.raises(AssertionError): | ||
CaBuAr(bands=('OK', 'BK')) | ||
|
||
def test_plot(self, dataset: CaBuAr) -> None: | ||
dataset.plot(dataset[0], suptitle='Test') | ||
plt.close() | ||
|
||
sample = dataset[0] | ||
sample['prediction'] = sample['mask'].clone() | ||
dataset.plot(sample, suptitle='prediction') | ||
plt.close() | ||
|
||
def test_plot_rgb(self, dataset: CaBuAr) -> None: | ||
dataset = CaBuAr(root=dataset.root, bands=('B02',)) | ||
with pytest.raises(ValueError, match="doesn't contain some of the RGB bands"): | ||
dataset.plot(dataset[0], suptitle='Single Band') | ||
|
||
def test_invalid_split(self, dataset: CaBuAr) -> None: | ||
with pytest.raises(AssertionError): | ||
CaBuAr(dataset.root, split='foo') |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,67 @@ | ||
# Copyright (c) Microsoft Corporation. All rights reserved. | ||
# Licensed under the MIT License. | ||
|
||
"""CaBuAr datamodule.""" | ||
|
||
from typing import Any | ||
|
||
import torch | ||
from einops import repeat | ||
|
||
from ..datasets import CaBuAr | ||
from .geo import NonGeoDataModule | ||
|
||
|
||
class CaBuArDataModule(NonGeoDataModule): | ||
"""LightningDataModule implementation for the CaBuAr dataset. | ||
Uses the train/val/test splits from the dataset | ||
.. versionadded:: 0.6 | ||
""" | ||
|
||
# min/max values computed on train set using 2/98 percentiles | ||
min = torch.tensor( | ||
[0.0, 1.0, 73.0, 39.0, 46.0, 25.0, 26.0, 21.0, 17.0, 1.0, 20.0, 21.0] | ||
) | ||
max = torch.tensor( | ||
[ | ||
1926.0, | ||
2174.0, | ||
2527.0, | ||
2950.0, | ||
3237.0, | ||
3717.0, | ||
4087.0, | ||
4271.0, | ||
4290.0, | ||
4219.0, | ||
4568.0, | ||
3753.0, | ||
] | ||
) | ||
|
||
def __init__( | ||
self, batch_size: int = 64, num_workers: int = 0, **kwargs: Any | ||
) -> None: | ||
"""Initialize a new CaBuArDataModule instance. | ||
Args: | ||
batch_size: Size of each mini-batch. | ||
num_workers: Number of workers for parallel data loading. | ||
**kwargs: Additional keyword arguments passed to | ||
:class:`~torchgeo.datasets.CaBuAr`. | ||
""" | ||
bands = kwargs.get('bands', CaBuAr.all_bands) | ||
band_indices = [CaBuAr.all_bands.index(b) for b in bands] | ||
mins = self.min[band_indices] | ||
maxs = self.max[band_indices] | ||
|
||
# Change detection, 2 images from different times | ||
mins = repeat(mins, 'c -> (t c)', t=2) | ||
maxs = repeat(maxs, 'c -> (t c)', t=2) | ||
|
||
self.mean = mins | ||
self.std = maxs - mins | ||
|
||
super().__init__(CaBuAr, batch_size, num_workers, **kwargs) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.