Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Initialize max of softmax with lowest of float #2786

Merged
merged 3 commits into from
Jan 9, 2020
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
3 changes: 1 addition & 2 deletions onnxruntime/contrib_ops/cpu/bert/attention.cc
Original file line number Diff line number Diff line change
Expand Up @@ -242,8 +242,7 @@ Status Attention<T>::Compute(OpKernelContext* context) const {
// Infinity divided by Infinity is a NAN. Thus, softmax gets a NAN if one or more item are large enough.
// a math transform as below is leveraged to get a stable softmax:
// e^xi/(e^x1 + ...e^xn) = e^(xi - max) / (e^(x1 - max) + ... + e^(xn - max))
// And for convenience, force max to 0.f if all xi are negative
float max = 0.f;
float max = -std::numeric_limits<float>::infinity();
for (int i = 0; i < D; i++) {
if (max < x[i]) max = x[i];
}
Expand Down
43 changes: 22 additions & 21 deletions onnxruntime/contrib_ops/cuda/bert/attention_impl.cu
Original file line number Diff line number Diff line change
Expand Up @@ -24,6 +24,7 @@ limitations under the License.
#include <cub/cub.cuh>
#include <cublas_v2.h>
#include <cuda_fp16.h>
#include <math_constants.h>
#include "core/providers/cuda/cu_inc/common.cuh"
#include "core/providers/cuda/cuda_common.h"
#include "attention_impl.h"
Expand Down Expand Up @@ -61,36 +62,36 @@ __device__ inline void Softmax(const int ld, const int num_valid, const T* input
__shared__ float sum_reverse_block;
__shared__ float max_block;

float thread_data(0);
float thread_data_max(-CUDART_INF_F);

// e^x is represented as infinity if x is large enough, like 100.f.
// Infinity divided by Infinity is a NAN. Thus, softmax gets a NAN if one or more item are large enough.
// a math transform as below is leveraged to get a stable softmax:
// e^xi/(e^x1 + ...e^xn) = e^(xi - max) / (e^(x1 - max) + ... + e^(xn - max))
const int offset = (blockIdx.y * gridDim.x + blockIdx.x) * ld;
for (int i = threadIdx.x; i < num_valid; i += TPB) {
const int index = offset + i;
if (thread_data < float(input[index])) {
thread_data = float(input[index]);
if (thread_data_max < float(input[index])) {
thread_data_max = float(input[index]);
}
}

// e^x is represented as infinity if x is large enough, like 100.f.
// Infinity divided by Infinity is a NAN. Thus, softmax gets a NAN if one or more item are large enough.
// a math transform as below is leveraged to get a stable softmax:
// e^xi/(e^x1 + ...e^xn) = e^(xi - max) / (e^(x1 - max) + ... + e^(xn - max))
// And for convenience, force max to 0.f if all xi are negative
const auto max = BlockReduce(tmp_storage).Reduce(thread_data, cub::Max());
const auto max = BlockReduce(tmp_storage).Reduce(thread_data_max, cub::Max());

// Store max value
if (threadIdx.x == 0) {
max_block = max;
}
__syncthreads();

float thread_data_sum(0.f);
for (int i = threadIdx.x; i < num_valid; i += TPB) {
const int index = offset + i;
const float val = input[index];
thread_data += expf(val - max_block);
thread_data_sum += expf(val - max_block);
}

const auto sum = BlockReduce(tmp_storage).Reduce(thread_data, cub::Sum());
const auto sum = BlockReduce(tmp_storage).Reduce(thread_data_sum, cub::Sum());
if (threadIdx.x == 0) {
sum_reverse_block = 1.f / sum;
}
Expand All @@ -114,30 +115,30 @@ __device__ inline void SoftmaxSmall(const int ld, const int num_valid, const T*
const int offset = (blockIdx.y * gridDim.x + blockIdx.x) * ld;
const int index = offset + threadIdx.x;

float thread_data(0);
if (threadIdx.x < num_valid) {
thread_data = input[index];
}

// e^x is represented as infinity if x is large enough, like 100.f.
// Infinity divided by Infinity is a NAN. Thus, softmax gets a NAN if one or more item are large enough.
// a math transform as below is leveraged to get a stable softmax:
// e^xi/(e^x1 + ...e^xn) = e^(xi - max) / (e^(x1 - max) + ... + e^(xn - max))
// And for convenience, force max to 0.f if all xi are negative
const auto max = BlockReduce(tmp_storage).Reduce(thread_data, cub::Max(), num_valid);
float thread_data_max(-CUDART_INF_F);
if (threadIdx.x < num_valid) {
thread_data_max = input[index];
}

const auto max = BlockReduce(tmp_storage).Reduce(thread_data_max, cub::Max(), num_valid);

// Store max value
if (threadIdx.x == 0) {
max_block = max;
}
__syncthreads();

float thread_data_exp(0.f);
if (threadIdx.x < num_valid) {
const float val = input[index];
thread_data = expf(val - max_block);
thread_data_exp = expf(val - max_block);
}

const auto sum = BlockReduce(tmp_storage).Reduce(thread_data, cub::Sum(), num_valid);
const auto sum = BlockReduce(tmp_storage).Reduce(thread_data_exp, cub::Sum(), num_valid);

// Store max value
if (threadIdx.x == 0) {
Expand All @@ -147,7 +148,7 @@ __device__ inline void SoftmaxSmall(const int ld, const int num_valid, const T*

if (threadIdx.x < ld) {
// this will be 0 for threadIdx.x >= num_valid
output[index] = T(thread_data * sum_reverse_block);
output[index] = T(thread_data_exp * sum_reverse_block);
}
}

Expand Down