Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add no scale check for resize and upsample #1484

Merged
merged 2 commits into from
Jul 25, 2019
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
27 changes: 18 additions & 9 deletions onnxruntime/core/providers/cpu/tensor/upsample.cc
Original file line number Diff line number Diff line change
Expand Up @@ -256,15 +256,15 @@ void upsampleBilinear(
auto output_width = static_cast<int64_t>(input_width * width_scale);
auto output_height = static_cast<int64_t>(input_height * height_scale);

size_t inx_buffer_size = 2 * sizeof(int64_t) * (output_height + output_width);
size_t idx_buffer_size = 2 * sizeof(int64_t) * (output_height + output_width);
size_t scale_buffer_size = 2 * sizeof(float_t) * (output_height + output_width);
auto inx_scale_data_buffer = alloc->Alloc(inx_buffer_size + scale_buffer_size);
BufferUniquePtr inx_scale_data_buffer_holder(inx_scale_data_buffer, BufferDeleter(alloc));
auto* inx_data = static_cast<int64_t*>(inx_scale_data_buffer_holder.get());
int64_t* input_width_mul_y1 = inx_data;
int64_t* input_width_mul_y2 = inx_data + output_height;
int64_t* in_x1 = inx_data + 2 * output_height;
int64_t* in_x2 = inx_data + 2 * output_height + output_width;
auto inx_scale_data_buffer = alloc->Alloc(idx_buffer_size + scale_buffer_size);
BufferUniquePtr idx_scale_data_buffer_holder(inx_scale_data_buffer, BufferDeleter(alloc));
auto* idx_data = static_cast<int64_t*>(idx_scale_data_buffer_holder.get());
int64_t* input_width_mul_y1 = idx_data;
int64_t* input_width_mul_y2 = idx_data + output_height;
int64_t* in_x1 = idx_data + 2 * output_height;
int64_t* in_x2 = idx_data + 2 * output_height + output_width;

auto* scale_data = reinterpret_cast<float*>(in_x2 + output_width);
float* dy1 = scale_data;
Expand Down Expand Up @@ -331,12 +331,21 @@ Status Upsample<T>::BaseCompute(OpKernelContext* context, const std::vector<floa
return Status(ONNXRUNTIME, INVALID_ARGUMENT, "Upsample: input tensor's dimension does not match the scales.");
}

bool no_scale = true;
std::vector<int64_t> Y_dims;
Y_dims.reserve( dims.size() );
for (std::size_t i = 0; i < dims.size(); i++) {
Y_dims.push_back(static_cast<int64_t>(scales[i] * dims[i]));
int64_t dim_y = static_cast<int64_t>(scales[i] * dims[i]);
if (no_scale && dim_y != dims[i]) no_scale = false;
Y_dims.push_back(dim_y);
}
Tensor* Y = context->Output(0, Y_dims);

if (no_scale) {
memcpy(Y->MutableDataRaw(), X->DataRaw(), Y->Size() * sizeof(T));
return Status::OK();
}

switch (mode_) {
case UpsampleMode::NN:
return UpsampleNearest<T>(X->template Data<T>(), Y->template MutableData<T>(), X->Shape(), Y->Shape(), scales);
Expand Down
101 changes: 71 additions & 30 deletions onnxruntime/test/providers/cpu/tensor/resize_op_test.cc
Original file line number Diff line number Diff line change
Expand Up @@ -27,28 +27,62 @@ TEST(ResizeOpTest, ResizeOpLineartDownSampleTest) {
test.Run();
}

TEST(ResizeOpTest, ResizeOpUpsampleNearestTest) {
TEST(ResizeOpTest, ResizeOpLineartUpSampleTest) {
OpTester test("Resize", 10);
std::vector<float> scales{1.0f, 1.0f, 2.0f, 3.0f};
std::vector<float> scales{1.0f, 1.0f, 2.0f, 4.0f};
test.AddAttribute("mode", "linear");

test.AddAttribute("mode", "nearest");
const int64_t N = 2, C = 1, H = 2, W = 2;
std::vector<float> X = {1.0f, 3.0f,
4.0f, 8.0f,

const int64_t N = 1, C = 1, H = 2, W = 2;
std::vector<float> X = {1.0f, 2.0f, 3.0f, 4.0f};
6.0f, 2.0f,
7.0f, 11.0f};

test.AddInput<float>("X", {N, C, H, W}, X);
test.AddInput<float>("scales", {4}, scales);

std::vector<float> Y = {1.0f, 1.0f, 1.0f, 2.0f, 2.0f, 2.0f,
1.0f, 1.0f, 1.0f, 2.0f, 2.0f, 2.0f,
3.0f, 3.0f, 3.0f, 4.0f, 4.0f, 4.0f,
3.0f, 3.0f, 3.0f, 4.0f, 4.0f, 4.0f};
std::vector<float> Y = {
1.0f, 1.5f, 2.0f, 2.5f, 3.0f, 3.0f, 3.0f, 3.0f,
2.5f, 3.25f, 4.0f, 4.75f, 5.5f, 5.5f, 5.5f, 5.5f,
4.0f, 5.0f, 6.0f, 7.0f, 8.0f, 8.0f, 8.0f, 8.0f,
4.0f, 5.0f, 6.0f, 7.0f, 8.0f, 8.0f, 8.0f, 8.0f,

6.0f, 5.0f, 4.0f, 3.0f, 2.0f, 2.0f, 2.0f, 2.0f,
6.5f, 6.5f, 6.5f, 6.5f, 6.5f, 6.5f, 6.5f, 6.5f,
7.0f, 8.0f, 9.0f, 10.0f, 11.0f, 11.0f, 11.0f, 11.0f,
7.0f, 8.0f, 9.0f, 10.0f, 11.0f, 11.0f, 11.0f, 11.0f};

test.AddOutput<float>("Y", {N, C, (int64_t)(H * scales[2]), (int64_t)(W * scales[3])}, Y);
test.Run();
}

TEST(ResizeOpTest, ResizeOpNearestTest) {
TEST(ResizeOpTest, ResizeOpLineartNoScaleTest) {
OpTester test("Resize", 10);
std::vector<float> scales{1.0f, 1.0f, 1.0f, 1.0f};
test.AddAttribute("mode", "linear");

const int64_t N = 2, C = 1, H = 2, W = 2;
std::vector<float> X = {1.0f, 3.0f,
4.0f, 8.0f,

6.0f, 2.0f,
7.0f, 11.0f};

test.AddInput<float>("X", {N, C, H, W}, X);
test.AddInput<float>("scales", {4}, scales);

std::vector<float> Y = {1.0f, 3.0f,
4.0f, 8.0f,

6.0f, 2.0f,
7.0f, 11.0f};

test.AddOutput<float>("Y", {N, C, H, W}, Y);
test.Run();
}

TEST(ResizeOpTest, ResizeOpNearestDownSampleTest) {
OpTester test("Resize", 10);
std::vector<float> scales{1.0f, 1.0f, 0.6f, 0.6f};

Expand All @@ -68,37 +102,44 @@ TEST(ResizeOpTest, ResizeOpNearestTest) {
test.Run();
}

TEST(ResizeOpTest, ResizeOpBilinearTest) {
TEST(ResizeOpTest, ResizeOpNearestUpSampleTest) {
OpTester test("Resize", 10);
std::vector<float> scales{1.0f, 1.0f, 0.5f, 0.5f};

test.AddAttribute("mode", "linear");
std::vector<float> scales{1.0f, 1.0f, 2.0f, 3.0f};

const int64_t N = 2, C = 1, H = 4, W = 8;
std::vector<float> X = {
1.0f, 1.5f, 2.0f, 2.5f, 3.0f, 3.0f, 3.0f, 3.0f,
2.0f, 2.5f, 3.0f, 3.5f, 4.0f, 4.0f, 4.0f, 4.0f,
3.0f, 3.5f, 4.0f, 4.5f, 5.0f, 5.0f, 5.0f, 5.0f,
3.0f, 3.5f, 4.0f, 4.5f, 5.0f, 5.0f, 5.0f, 5.0f,
test.AddAttribute("mode", "nearest");

3.0f, 3.5f, 4.0f, 4.5f, 5.0f, 5.0f, 5.0f, 5.0f,
5.0f, 5.5f, 6.0f, 6.5f, 7.0f, 7.0f, 7.0f, 7.0f,
7.0f, 7.5f, 8.0f, 8.5f, 9.0f, 9.0f, 9.0f, 9.0f,
7.0f, 7.5f, 8.0f, 8.5f, 9.0f, 9.0f, 9.0f, 9.0f};
const int64_t N = 1, C = 1, H = 2, W = 2;
std::vector<float> X = {1.0f, 2.0f, 3.0f, 4.0f};

test.AddInput<float>("X", {N, C, H, W}, X);
test.AddInput<float>("scales", {4}, scales);

std::vector<float> Y = {
1.0f, 2.0f, 3.0f, 3.0f,
3.0f, 4.0f, 5.0f, 5.0f,

3.0f, 4.0f, 5.0f, 5.0f,
7.0f, 8.0f, 9.0f, 9.0f};
std::vector<float> Y = {1.0f, 1.0f, 1.0f, 2.0f, 2.0f, 2.0f,
1.0f, 1.0f, 1.0f, 2.0f, 2.0f, 2.0f,
3.0f, 3.0f, 3.0f, 4.0f, 4.0f, 4.0f,
3.0f, 3.0f, 3.0f, 4.0f, 4.0f, 4.0f};

test.AddOutput<float>("Y", {N, C, (int64_t)(H * scales[2]), (int64_t)(W * scales[3])}, Y);
test.Run();
}

TEST(UpsampleOpTest, ResizeOpNearestNoScaleTest) {
OpTester test("Resize", 10);
std::vector<float> scales{1.0f, 1.0f, 1.0f, 1.0f};

test.AddAttribute("mode", "nearest");

const int64_t N = 1, C = 1, H = 2, W = 2;
std::vector<float> X = {1.0f, 2.0f, 3.0f, 4.0f};

test.AddInput<float>("X", {N, C, H, W}, X);
test.AddInput<float>("scales", {4}, scales);

std::vector<float> Y = {1.0f, 2.0f, 3.0f, 4.0f};

test.AddOutput<float>("Y", {N, C, H, W}, Y);
test.Run();
}

} // namespace test
} // namespace onnxruntime
60 changes: 40 additions & 20 deletions onnxruntime/test/providers/cpu/tensor/upsample_op_test.cc
Original file line number Diff line number Diff line change
Expand Up @@ -70,7 +70,7 @@ TEST(UpsampleOpTest, UpsampleOpNearestTest_int32) {
7, 7, 7, 9, 9, 9};

test.AddOutput<int32_t>("Y", {N, C, (int64_t)(H * scales[2]), (int64_t)(W * scales[3])}, Y);
test.Run(OpTester::ExpectResult::kExpectSuccess, "", {kTensorrtExecutionProvider}); //TensorRT: nvinfer1::query::Ports<nvinfer1::query::AbstractTensor>&): Assertion `!formats.empty()' failed
test.Run(OpTester::ExpectResult::kExpectSuccess, "", {kTensorrtExecutionProvider}); //TensorRT: nvinfer1::query::Ports<nvinfer1::query::AbstractTensor>&): Assertion `!formats.empty()' failed
}

TEST(UpsampleOpTest, UpsampleOpNearestTest_uint8) {
Expand Down Expand Up @@ -170,10 +170,9 @@ TEST(UpsampleOpTest, UpsampleOpNearest222XTest) {
3.0f, 3.0f, 5.0f, 5.0f,
3.0f, 3.0f, 5.0f, 5.0f,
7.0f, 7.0f, 9.0f, 9.0f,
7.0f, 7.0f, 9.0f, 9.0f
};
7.0f, 7.0f, 9.0f, 9.0f};

test.AddOutput<float>("Y", {N*2, C, (int64_t)(H * scales[2]), (int64_t)(W * scales[3])}, Y);
test.AddOutput<float>("Y", {N * 2, C, (int64_t)(H * scales[2]), (int64_t)(W * scales[3])}, Y);
test.Run();
}

Expand Down Expand Up @@ -208,6 +207,32 @@ TEST(UpsampleOpTest, UpsampleOpNearest15XTest) {
test.Run();
}

TEST(UpsampleOpTest, UpsampleOpNearestTest_NoScale) {
OpTester test("Upsample");

std::vector<float> scales{1.0f, 1.0f, 1.0f, 1.0f};
test.AddAttribute("mode", "nearest");
test.AddAttribute("scales", scales);

const int64_t N = 1, C = 2, H = 2, W = 2;
std::vector<float> X = {1.0f, 3.0f,
3.0f, 5.0f,

3.0f, 5.0f,
7.0f, 9.0f};

test.AddInput<float>("X", {N, C, H, W}, X);

std::vector<float> Y = {1.0f, 3.0f,
3.0f, 5.0f,

3.0f, 5.0f,
7.0f, 9.0f};

test.AddOutput<float>("Y", {N, C, H, W}, Y);
test.Run();
}

TEST(UpsampleOpTest, UpsampleOpNearest2XTest_int32) {
OpTester test("Upsample");

Expand Down Expand Up @@ -236,7 +261,7 @@ TEST(UpsampleOpTest, UpsampleOpNearest2XTest_int32) {
7, 7, 9, 9};

test.AddOutput<int32_t>("Y", {N, C, (int64_t)(H * scales[2]), (int64_t)(W * scales[3])}, Y);
test.Run(OpTester::ExpectResult::kExpectSuccess, "", {kTensorrtExecutionProvider}); //TensorRT: nvinfer1::query::Ports<nvinfer1::query::AbstractTensor>&): Assertion `!formats.empty()' failed
test.Run(OpTester::ExpectResult::kExpectSuccess, "", {kTensorrtExecutionProvider}); //TensorRT: nvinfer1::query::Ports<nvinfer1::query::AbstractTensor>&): Assertion `!formats.empty()' failed
}

TEST(UpsampleOpTest, UpsampleOpBilinearTest) {
Expand Down Expand Up @@ -270,34 +295,29 @@ TEST(UpsampleOpTest, UpsampleOpBilinearTest) {
test.Run();
}

TEST(UpsampleOpTest, UpsampleOpBilinearTest2) {
TEST(UpsampleOpTest, UpsampleOpBilinearTest_NoScale) {
OpTester test("Upsample");

std::vector<float> scales{1.0f, 1.0f, 2.0f, 4.0f};
std::vector<float> scales{1.0f, 1.0f, 1.0f, 1.0f};
test.AddAttribute("mode", "linear");
test.AddAttribute("scales", scales);

const int64_t N = 2, C = 1, H = 2, W = 2;
std::vector<float> X = {1.0f, 3.0f,
4.0f, 8.0f,
3.0f, 5.0f,

6.0f, 2.0f,
7.0f, 11.0f};
3.0f, 5.0f,
7.0f, 9.0f};

test.AddInput<float>("X", {N, C, H, W}, X);

std::vector<float> Y = {
1.0f, 1.5f, 2.0f, 2.5f, 3.0f, 3.0f, 3.0f, 3.0f,
2.5f, 3.25f, 4.0f, 4.75f, 5.5f, 5.5f, 5.5f, 5.5f,
4.0f, 5.0f, 6.0f, 7.0f, 8.0f, 8.0f, 8.0f, 8.0f,
4.0f, 5.0f, 6.0f, 7.0f, 8.0f, 8.0f, 8.0f, 8.0f,
std::vector<float> Y = {1.0f, 3.0f,
3.0f, 5.0f,

6.0f, 5.0f, 4.0f, 3.0f, 2.0f, 2.0f, 2.0f, 2.0f,
6.5f, 6.5f, 6.5f, 6.5f, 6.5f, 6.5f, 6.5f, 6.5f,
7.0f, 8.0f, 9.0f, 10.0f, 11.0f, 11.0f, 11.0f, 11.0f,
7.0f, 8.0f, 9.0f, 10.0f, 11.0f, 11.0f, 11.0f, 11.0f};
3.0f, 5.0f,
7.0f, 9.0f};

test.AddOutput<float>("Y", {N, C, (int64_t)(H * scales[2]), (int64_t)(W * scales[3])}, Y);
test.AddOutput<float>("Y", {N, C, H, W}, Y);
test.Run();
}

Expand Down