Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

support Pad(18) #14219

Merged
merged 8 commits into from
Jan 23, 2023
Merged
Show file tree
Hide file tree
Changes from 6 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
Expand Up @@ -397,25 +397,11 @@ private static Dictionary<string, string> GetSkippedModels(DirectoryInfo modelsD
{ "test_bitwise_xor_i32_2d", "pending opset 18 support"},
{ "test_bitwise_xor_ui8_bcast_4v3d", "pending opset 18 support"},
{ "test_bitwise_xor_ui64_bcast_3v1d", "pending opset 18 support"},
{ "test_center_crop_pad_crop", "pending opset 18 support"},
{ "test_center_crop_pad_crop_and_pad", "pending opset 18 support"},
{ "test_center_crop_pad_crop_and_pad_expanded", "pending opset 18 support"},
{ "test_center_crop_pad_crop_axes_chw", "pending opset 18 support"},
{ "test_center_crop_pad_crop_axes_chw_expanded", "pending opset 18 support"},
{ "test_center_crop_pad_crop_axes_hwc", "pending opset 18 support"},
{ "test_center_crop_pad_crop_axes_hwc_expanded", "pending opset 18 support"},
{ "test_center_crop_pad_crop_expanded", "pending opset 18 support"},
{ "test_center_crop_pad_pad", "pending opset 18 support"},
{ "test_center_crop_pad_pad_expanded", "pending opset 18 support"},
{ "test_col2im", "pending opset 18 support"},
{ "test_col2im_5d", "pending opset 18 support"},
{ "test_col2im_dilations", "pending opset 18 support"},
{ "test_col2im_pads", "pending opset 18 support"},
{ "test_col2im_strides", "pending opset 18 support"},
{ "test_constant_pad", "pending opset 18 support"},
{ "test_constant_pad_axes", "pending opset 18 support"},
{ "test_edge_pad", "pending opset 18 support"},
{ "test_reflect_pad", "pending opset 18 support"},
{ "test_scatter_elements_with_axis", "pending opset 18 support"},
{ "test_scatter_elements_without_axis", "pending opset 18 support"},
{ "test_scatter_elements_with_duplicate_indices", "pending opset 18 support"},
Expand Down
3 changes: 2 additions & 1 deletion docs/OperatorKernels.md
Original file line number Diff line number Diff line change
Expand Up @@ -219,7 +219,8 @@ Do not modify directly.*
|PRelu|*in* X:**T**<br> *in* slope:**T**<br> *out* Y:**T**|16+|**T** = tensor(float)|
|||[9, 15]|**T** = tensor(float)|
|||[7, 8]|**T** = tensor(float)|
|Pad|*in* data:**T**<br> *in* pads:**tensor(int64)**<br> *in* constant_value:**T**<br> *in* axes:**Tind**<br> *out* output:**T**<br><br>or<br><br>*in* data:**T**<br> *in* pads:**tensor(int64)**<br> *in* constant_value:**T**<br> *out* output:**T**<br><br>or<br><br>*in* data:**T**<br> *out* output:**T**|13+|**T** = tensor(bool), tensor(double), tensor(float), tensor(int32), tensor(int64), tensor(int8), tensor(uint32), tensor(uint64), tensor(uint8)|
|Pad|*in* data:**T**<br> *in* pads:**tensor(int64)**<br> *in* constant_value:**T**<br> *in* axes:**Tind**<br> *out* output:**T**<br><br>or<br><br>*in* data:**T**<br> *in* pads:**tensor(int64)**<br> *in* constant_value:**T**<br> *out* output:**T**<br><br>or<br><br>*in* data:**T**<br> *out* output:**T**|18+|**T** = tensor(bool), tensor(double), tensor(float), tensor(int32), tensor(int64), tensor(int8), tensor(uint32), tensor(uint64), tensor(uint8)|
|||[13, 17]|**T** = tensor(bool), tensor(double), tensor(float), tensor(int32), tensor(int64), tensor(int8), tensor(uint32), tensor(uint64), tensor(uint8)|
|||[11, 12]|**T** = tensor(double), tensor(float), tensor(int32), tensor(int64), tensor(int8), tensor(uint32), tensor(uint64), tensor(uint8)|
|||[2, 10]|**T** = tensor(double), tensor(float)|
|ParametricSoftplus|*in* X:**T**<br> *out* Y:**T**|1+|**T** = tensor(float)|
Expand Down
10 changes: 6 additions & 4 deletions onnxruntime/core/providers/cpu/cpu_execution_provider.cc
Original file line number Diff line number Diff line change
Expand Up @@ -665,7 +665,7 @@ class ONNX_OPERATOR_TYPED_KERNEL_CLASS_NAME(kCpuExecutionProvider, kOnnxDomain,
class ONNX_OPERATOR_TYPED_KERNEL_CLASS_NAME(kCpuExecutionProvider, kOnnxDomain, 13, int64_t, NonZero);
class ONNX_OPERATOR_TYPED_KERNEL_CLASS_NAME(kCpuExecutionProvider, kOnnxDomain, 13, uint8_t, NonZero);
class ONNX_OPERATOR_KERNEL_CLASS_NAME(kCpuExecutionProvider, kOnnxDomain, 13, GatherND);
class ONNX_OPERATOR_KERNEL_CLASS_NAME(kCpuExecutionProvider, kOnnxDomain, 13, Pad);
class ONNX_OPERATOR_VERSIONED_KERNEL_CLASS_NAME(kCpuExecutionProvider, kOnnxDomain, 13, 17, Pad);
class ONNX_OPERATOR_VERSIONED_TYPED_KERNEL_CLASS_NAME(kCpuExecutionProvider, kOnnxDomain, 13, 17, float, ReduceL1);
class ONNX_OPERATOR_VERSIONED_TYPED_KERNEL_CLASS_NAME(kCpuExecutionProvider, kOnnxDomain, 13, 17, int32_t, ReduceL1);
class ONNX_OPERATOR_VERSIONED_TYPED_KERNEL_CLASS_NAME(kCpuExecutionProvider, kOnnxDomain, 13, 17, float, ReduceL2);
Expand Down Expand Up @@ -830,6 +830,7 @@ class ONNX_OPERATOR_TYPED_KERNEL_CLASS_NAME(kCpuExecutionProvider, kOnnxDomain,
class ONNX_OPERATOR_TYPED_KERNEL_CLASS_NAME(kCpuExecutionProvider, kOnnxDomain, 18, float, ReduceSumSquare);
class ONNX_OPERATOR_TYPED_KERNEL_CLASS_NAME(kCpuExecutionProvider, kOnnxDomain, 18, double, ReduceSumSquare);
class ONNX_OPERATOR_TYPED_KERNEL_CLASS_NAME(kCpuExecutionProvider, kOnnxDomain, 18, int32_t, ReduceSumSquare);
class ONNX_OPERATOR_KERNEL_CLASS_NAME(kCpuExecutionProvider, kOnnxDomain, 18, Pad);
class ONNX_OPERATOR_KERNEL_CLASS_NAME(kCpuExecutionProvider, kOnnxDomain, 18, Split);
#if !defined(DISABLE_OPTIONAL_TYPE)
class ONNX_OPERATOR_KERNEL_CLASS_NAME(kCpuExecutionProvider, kOnnxDomain, 18, OptionalHasElement);
Expand Down Expand Up @@ -1853,7 +1854,7 @@ Status RegisterOnnxOperatorKernels(KernelRegistry& kernel_registry) {
BuildKernelCreateInfo<ONNX_OPERATOR_TYPED_KERNEL_CLASS_NAME(kCpuExecutionProvider, kOnnxDomain, 13, uint8_t,
NonZero)>,
BuildKernelCreateInfo<ONNX_OPERATOR_KERNEL_CLASS_NAME(kCpuExecutionProvider, kOnnxDomain, 13, GatherND)>,
BuildKernelCreateInfo<ONNX_OPERATOR_KERNEL_CLASS_NAME(kCpuExecutionProvider, kOnnxDomain, 13, Pad)>,
BuildKernelCreateInfo<ONNX_OPERATOR_VERSIONED_KERNEL_CLASS_NAME(kCpuExecutionProvider, kOnnxDomain, 13, 17, Pad)>,
BuildKernelCreateInfo<ONNX_OPERATOR_VERSIONED_TYPED_KERNEL_CLASS_NAME(kCpuExecutionProvider, kOnnxDomain, 13, 17, float,
ReduceL1)>,
BuildKernelCreateInfo<ONNX_OPERATOR_VERSIONED_TYPED_KERNEL_CLASS_NAME(kCpuExecutionProvider, kOnnxDomain, 13, 17, int32_t,
Expand Down Expand Up @@ -2128,11 +2129,12 @@ Status RegisterOnnxOperatorKernels(KernelRegistry& kernel_registry) {
ReduceSumSquare)>,
BuildKernelCreateInfo<ONNX_OPERATOR_TYPED_KERNEL_CLASS_NAME(kCpuExecutionProvider, kOnnxDomain, 18, double,
ReduceSumSquare)>,
BuildKernelCreateInfo<ONNX_OPERATOR_KERNEL_CLASS_NAME(kCpuExecutionProvider, kOnnxDomain, 18, Split)>,
BuildKernelCreateInfo<ONNX_OPERATOR_KERNEL_CLASS_NAME(kCpuExecutionProvider, kOnnxDomain, 18, Pad)>,
BuildKernelCreateInfo<ONNX_OPERATOR_KERNEL_CLASS_NAME(kCpuExecutionProvider, kOnnxDomain, 18, Split)>,
#if !defined(DISABLE_OPTIONAL_TYPE)
BuildKernelCreateInfo<ONNX_OPERATOR_KERNEL_CLASS_NAME(kCpuExecutionProvider, kOnnxDomain, 18, OptionalHasElement)>,
BuildKernelCreateInfo<ONNX_OPERATOR_KERNEL_CLASS_NAME(kCpuExecutionProvider, kOnnxDomain, 18, OptionalGetElement)>,
#endif
#endif
};

for (auto& function_table_entry : function_table) {
Expand Down
92 changes: 80 additions & 12 deletions onnxruntime/core/providers/cpu/tensor/pad.cc
Original file line number Diff line number Diff line change
Expand Up @@ -66,10 +66,24 @@ ORT_SPECIFY_OP_KERNEL_ARG_DEFAULT_TYPES(
uint8_t,
bool);

ORT_SPECIFY_OP_KERNEL_ARG_DEFAULT_TYPES(
kCpuExecutionProvider, kOnnxDomain, Pad, 18, Input, 0,
float,
double,
int32_t,
int64_t,
uint32_t,
uint64_t,
int8_t,
uint8_t,
bool);

ORT_SPECIFY_OP_KERNEL_ARG_REQUIRED_TYPES(
kCpuExecutionProvider, kOnnxDomain, Pad, 11, Input, 0, int32_t, int64_t);
ORT_SPECIFY_OP_KERNEL_ARG_REQUIRED_TYPES(
kCpuExecutionProvider, kOnnxDomain, Pad, 13, Input, 0, int32_t, int64_t);
ORT_SPECIFY_OP_KERNEL_ARG_REQUIRED_TYPES(
kCpuExecutionProvider, kOnnxDomain, Pad, 18, Input, 0, int32_t, int64_t);
} // namespace op_kernel_type_control

using EnabledPad2Types = ORT_OP_KERNEL_ARG_ENABLED_TYPE_LIST(
Expand All @@ -78,6 +92,9 @@ using EnabledPad11Types = ORT_OP_KERNEL_ARG_ENABLED_TYPE_LIST(
kCpuExecutionProvider, kOnnxDomain, Pad, 11, Input, 0);
using EnabledPad13Types = ORT_OP_KERNEL_ARG_ENABLED_TYPE_LIST(
kCpuExecutionProvider, kOnnxDomain, Pad, 13, Input, 0);
using EnabledPad18Types = ORT_OP_KERNEL_ARG_ENABLED_TYPE_LIST(
kCpuExecutionProvider, kOnnxDomain, Pad, 18, Input, 0);


using AllEnabledPadTypes =
utils::TypeSetUnion<
Expand Down Expand Up @@ -106,13 +123,21 @@ ONNX_CPU_OPERATOR_VERSIONED_KERNEL(
BuildKernelDefConstraintsFromTypeList<EnabledPad11Types>()),
Pad);

ONNX_CPU_OPERATOR_VERSIONED_KERNEL(
Pad,
13, 17,
KernelDefBuilder().TypeConstraint(
"T",
BuildKernelDefConstraintsFromTypeList<EnabledPad13Types>()),
Pad);

ONNX_CPU_OPERATOR_KERNEL(
Pad,
13,
18,
KernelDefBuilder()
.TypeConstraint(
"T",
BuildKernelDefConstraintsFromTypeList<EnabledPad13Types>()),
BuildKernelDefConstraintsFromTypeList<EnabledPad18Types>()),
Pad);


Expand Down Expand Up @@ -463,6 +488,24 @@ static PadValue PadValueFromFloat(float value, MLDataType data_type) {
return result;
}

template <class T>
void ComputePadWithAxes(
gsl::span<const int64_t> pads_tensor_raw_data,
gsl::span<const T> axes_tensor_raw_data,
size_t data_rank,
PadsVector& pads) {
size_t axes_size = axes_tensor_raw_data.size();
for (size_t i = 0; i < axes_size; ++i) {
T axis = axes_tensor_raw_data[i];
if (axis < 0) {
axis = (T)data_rank + axis; // -1 as data_rank - 1
}
liqunfu marked this conversation as resolved.
Show resolved Hide resolved
ORT_ENFORCE(axis >= 0 && axis < (int64_t)data_rank, "values in Axes should be within data_rank.");
pads[(unsigned int)axis] = pads_tensor_raw_data[i]; // xi_begin
liqunfu marked this conversation as resolved.
Show resolved Hide resolved
pads[data_rank + (unsigned int)axis] = pads_tensor_raw_data[axes_size + i]; // xi_end
}
}

Status Pad::Compute(OpKernelContext* ctx) const {
liqunfu marked this conversation as resolved.
Show resolved Hide resolved
const Tensor& input_tensor = *ctx->Input<Tensor>(0);
MLDataType data_type = input_tensor.DataType();
Expand All @@ -479,20 +522,44 @@ Status Pad::Compute(OpKernelContext* ctx) const {

const Tensor& pads_tensor = *ctx->Input<Tensor>(1);
auto pads_tensor_dims = pads_tensor.Shape().GetDims();
ORT_ENFORCE(pads_tensor.IsDataType<int64_t>(),
"Pads tensor should be an INT64 tensor");
ORT_ENFORCE(pads_tensor.IsDataType<int64_t>(), "Pads tensor should be an INT64 tensor");
liqunfu marked this conversation as resolved.
Show resolved Hide resolved
ORT_ENFORCE(pads_tensor_dims.size() == 1 || (pads_tensor_dims.size() == 2 && pads_tensor_dims[0] == 1),
"Pads tensor should be a 1D tensor of shape [2 * input_rank] "
"or a 2D tensor of shape [1, 2 * input_rank]");

"Pads tensor should be a 1D tensor of shape [2 * num_axes] "
"or a 2D tensor of shape [1, 2 * num_axes]");
const int64_t* pads_tensor_raw_data = pads_tensor.Data<int64_t>();
size_t pads_size = static_cast<size_t>(pads_tensor.Shape().Size());
ORT_ENFORCE(pads_size == 2 * data_rank,
"Pads tensor size should be equal to twice the input dimension count ");

pads.reserve(2 * data_rank);
for (size_t i = 0; i < pads_size; ++i) {
pads.push_back(pads_tensor_raw_data[i]);

const Tensor* axes_tensor = ctx->Input<Tensor>(3);
if (axes_tensor) {
ORT_ENFORCE(axes_tensor->IsDataType<int32_t>() || axes_tensor->IsDataType<int64_t>(), "Axes tensor should be an INT32 or INT64 tensor");
liqunfu marked this conversation as resolved.
Show resolved Hide resolved
auto axes_tensor_dims = axes_tensor->Shape().GetDims();
ORT_ENFORCE(axes_tensor_dims.size() == 1, "Axes tensor should be a 1D tensor ");
liqunfu marked this conversation as resolved.
Show resolved Hide resolved
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I know some of the code is old here and it has established a practice that it's ok to use ORT_ENFORCE in a Compute method. Since Compute already returns a Status we should try to return a Status with INVALID_ARGUMENT code.

int64_t axes_size = axes_tensor_dims[0];
ORT_ENFORCE((int64_t)pads_size == 2 * axes_size, "Pads tensor size should be [2 * num_axes] ");

pads.resize(2 * data_rank, 0);
if (axes_tensor->IsDataType<int32_t>()) {
const int32_t* axes_tensor_raw_data = axes_tensor->Data<int32_t>();
ComputePadWithAxes<int32_t>(
{pads_tensor_raw_data, onnxruntime::narrow<size_t>(2 * axes_size)},
{axes_tensor_raw_data, onnxruntime::narrow<size_t>(axes_size)},
data_rank,
pads);
} else if(axes_tensor->IsDataType<int64_t>()) {
const int64_t* axes_tensor_raw_data = axes_tensor->Data<int64_t>();
ComputePadWithAxes<int64_t>(
{pads_tensor_raw_data, onnxruntime::narrow<size_t>(2 * axes_size)},
{axes_tensor_raw_data, onnxruntime::narrow<size_t>(axes_size)},
data_rank,
pads);
}
} else {
ORT_ENFORCE(pads_size == 2 * data_rank,
"Pads tensor size should be equal to twice the input dimension count ");
for (size_t i = 0; i < pads_size; ++i) {
pads.push_back(pads_tensor_raw_data[i]);
}
}

// Separate out any negative pads into the slices array
Expand Down Expand Up @@ -525,6 +592,7 @@ Status Pad::Compute(OpKernelContext* ctx) const {
ORT_THROW("Unsupported input data type of ", data_type);
}
}

pads_to_use = &pads;
slices_to_use = &slices;
} else {
Expand Down
23 changes: 23 additions & 0 deletions onnxruntime/test/providers/cpu/tensor/pad_test.cc
Original file line number Diff line number Diff line change
Expand Up @@ -805,5 +805,28 @@ TEST(PadOpTest, BoolType) {
test.Run(OpTester::ExpectResult::kExpectSuccess, "", {kTensorrtExecutionProvider});
}

TEST(PadOpTest, ConstantPadAxes) {
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Can we please add more tests?

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

The feature added to Pad(18) is with pad axes input. One new test case was added in ONNX for this new feature. Here the similar unit test is added to test the new feature.

OpTester test("Pad", 18);
test.AddAttribute("mode", "constant");
test.AddInput<int32_t>("data", {1, 2, 2, 2},
{
1, 1,
1, 1,
1, 1,
1, 1});
test.AddInput<int64_t>("pads", {4}, {0, 1, 0, 1});
test.AddInput<int32_t>("value", {1}, {0});
test.AddInput<int32_t>("axes", {2}, {1, 3});
test.AddOutput<int32_t>("output", {1, 2, 2, 4},
{
0, 1, 1, 0,
0, 1, 1, 0,
0, 1, 1, 0,
0, 1, 1, 0
}
);
test.Run(OpTester::ExpectResult::kExpectSuccess, "", {kTensorrtExecutionProvider});
}

} // namespace test
} // namespace onnxruntime
Original file line number Diff line number Diff line change
Expand Up @@ -119,14 +119,9 @@
"^test_add_uint8_cuda",
"^test_roialign_aligned_*",
"^test_bitwise_*",
"^test_center_crop_pad_*",
liqunfu marked this conversation as resolved.
Show resolved Hide resolved
"^test_clip_default_int8_max_expanded_cpu",
"^test_clip_default_int8_min_expanded_cpu",
"^test_col2im_*",
"^test_constant_pad_axes_cpu",
"^test_constant_pad_cpu",
"^test_edge_pad_cpu",
"^test_reflect_pad_cpu",
"^test_scatter_elements_*",
"^test_softplus_example_expanded_cpu",
"^test_softplus_expanded_cpu",
Expand Down