-
Notifications
You must be signed in to change notification settings - Fork 10
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Added comparison of gradient ratios and hessian condition numbers
- Loading branch information
1 parent
1253878
commit 9ced0b0
Showing
1 changed file
with
319 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,319 @@ | ||
import os | ||
import numpy as np | ||
import pandas as pd | ||
from scipy.spatial.transform import Rotation | ||
import jax | ||
import jax.numpy as jnp | ||
import matplotlib.pyplot as plt | ||
import matplotlib.colors as matcolors | ||
from matplotlib.ticker import FormatStrFormatter | ||
import seaborn as sns | ||
|
||
|
||
from hitchhiking_rotations import HITCHHIKING_ROOT_DIR | ||
from mpl_toolkits.mplot3d import Axes3D | ||
|
||
#import lovely_jax as lj | ||
#lj.monkey_patch() | ||
|
||
N = int(1e3) # Number of randomly sampled rotations and predicted matrices | ||
plot_frames = False # Plot frames before/after SVD/GSO transform | ||
plot_frames_with_grads = True | ||
plot_grads = False # Plot ratio between gradients entries | ||
plot_ratios = False # Plot 2D scatter plot of gradients | ||
plot_condnums = False # Plot condition numbers of Hessian matrices and max eigen values | ||
|
||
|
||
rot = Rotation.random(N) # generate N random rotations | ||
rotmats = jnp.array(rot.as_matrix()) | ||
#predmats = rotmats + 1e-1 * jax.random.normal(key=jax.random.PRNGKey(42), shape=(N, 3, 3)) | ||
predmats = jax.random.uniform(key=jax.random.PRNGKey(42), shape=(N, 3, 3), minval=-2., maxval=2.) | ||
#predmats = 2*jax.random.normal(key=jax.random.PRNGKey(1), shape=(N, 3, 3)) | ||
|
||
@jax.jit | ||
def gso(m: jnp.ndarray) -> jnp.ndarray: | ||
""" Gram-Schmidt orthogonalization from 6D input. | ||
Source: Google research - https://github.com/google-research/google-research/blob/193eb9d7b643ee5064cb37fd8e6e3ecde78737dc/special_orthogonalization/utils.py#L93-L115 | ||
""" | ||
x = m[:, 0] | ||
y = m[:, 1] | ||
xn = x / jnp.linalg.norm(x, axis=0) | ||
z = jnp.cross(xn, y) | ||
zn = z / jnp.linalg.norm(z, axis=0) | ||
yn = jnp.cross(zn, xn) | ||
return jnp.c_[xn, yn, zn] | ||
|
||
@jax.jit | ||
def svd(m: jnp.ndarray) -> jnp.ndarray: | ||
""" Maps 3x3 matrices onto SO(3) via symmetric orthogonalization. | ||
Source: Google research - https://github.com/google-research/google-research/blob/193eb9d7b643ee5064cb37fd8e6e3ecde78737dc/special_orthogonalization/utils.py#L93-L115 | ||
""" | ||
""" | ||
m = jax.lax.cond(jnp.linalg.matrix_rank(m) < 3, | ||
true_fun=lambda x: x + jnp.eye(3) * 1e-10, | ||
false_fun=lambda x: x, | ||
operand=m) | ||
""" | ||
U, _, Vh = jnp.linalg.svd(m, full_matrices=False) | ||
det = jnp.linalg.det(jnp.matmul(U, Vh)) | ||
return jnp.matmul(jnp.c_[U[:, :-1], U[:, -1] * det], Vh) | ||
|
||
gso_vmap = jax.vmap(gso) | ||
pred_gso = gso_vmap(predmats) | ||
rot_gso = gso_vmap(rotmats) | ||
|
||
svd_vmap = jax.vmap(svd) | ||
pred_svd = svd_vmap(predmats) | ||
rot_svd = svd_vmap(rotmats) | ||
|
||
def plot_matrix(ax, mat, color, label, offset=jnp.zeros(3,)): | ||
for i in range(len(mat)): | ||
if i == 0: | ||
ax.quiver(offset[0][i], offset[1][i], offset[2][i], | ||
mat[0][i], mat[1][i], mat[2][i], | ||
color=color, label=f'{label}') | ||
else: | ||
ax.quiver(offset[0][i], offset[1][i], offset[2][i], | ||
mat[0][i], mat[1][i], mat[2][i], | ||
color=color) | ||
ax.text(mat[0][i], mat[1][i], mat[2][i], f'$e_{i + 1}$', color='black') | ||
|
||
|
||
def plot_matrices(ax, r_list, labels, off_list=None): | ||
ax.set(xlim=(-1.25, 1.25), ylim=(-1.25, 1.25), zlim=(-1.25, 1.25)) | ||
colors = ['r', 'g', 'b', 'y', 'm', 'c'] | ||
|
||
if off_list is None: | ||
off_list = [jnp.zeros((3,3)) for _ in range(len(r_list))] | ||
|
||
for i in range(len(r_list)): | ||
plot_matrix(ax, r_list[i], colors[i], label=labels[i], offset=off_list[i]) | ||
|
||
ax.set_xlabel('X') | ||
ax.set_ylabel('Y') | ||
ax.set_zlabel('Z') | ||
ax.set_box_aspect([1, 1, 1]) | ||
ax.legend() | ||
|
||
|
||
# PLOT frames to check that GSO and SVD layers are working | ||
if plot_frames: | ||
|
||
for r00, r01, r02, r10, r11, r12 in zip(rotmats, rot_svd, rot_gso, predmats, pred_svd, pred_gso): | ||
fig = plt.figure() | ||
ax1 = fig.add_subplot(121, projection='3d', proj_type="ortho") | ||
plot_matrices(ax1, [r00, r01, r02], ["rotmat", "rot_svd", "rot_gso"]) | ||
|
||
ax2 = fig.add_subplot(122, projection='3d', proj_type="ortho") | ||
plot_matrices(ax2, [r10, r11, r12], ["predmat", "pred_svd", "pred_gso"]) | ||
|
||
plt.show() | ||
|
||
|
||
############################################################################### | ||
# DEFINE GRADIENTS AND HESSIANS | ||
############################################################################### | ||
|
||
def norm(mat1: jnp.ndarray, mat2: jnp.ndarray) -> jnp.ndarray: | ||
return jnp.linalg.norm(mat1.flatten() - mat2.flatten()) | ||
|
||
def norm_gso(predmat_vec, rotmat): | ||
return norm(rotmat, gso(predmat_vec.reshape(3,2))) | ||
|
||
def norm_svd(predmat_vec, rotmat): | ||
return norm(rotmat, svd(predmat_vec.reshape(3,3))) | ||
|
||
def hess_gso(rotmat: jnp.ndarray, predmat_vec: jnp.ndarray) -> jnp.ndarray: | ||
return jax.hessian(norm_gso)(predmat_vec, rotmat) | ||
|
||
def hess_svd(rotmat: jnp.ndarray, predmat_vec: jnp.ndarray) -> jnp.ndarray: | ||
return jax.hessian(norm_svd)(predmat_vec, rotmat) | ||
|
||
|
||
############################################################################### | ||
# COMPUTE GRADIENTS | ||
############################################################################### | ||
|
||
loss_svd = jax.vmap(norm, (0, 0))(rotmats, pred_svd) | ||
loss_gso = jax.vmap(norm,(0, 0))(rotmats, pred_gso) | ||
|
||
grads_gso = jax.vmap(jax.grad(norm_gso),(0, 0))(predmats[:,:,:2].reshape(N,6), rotmats) | ||
grads_svd = jax.vmap(jax.grad(norm_svd),(0, 0))(predmats.reshape(N,9), rotmats) | ||
gradnorm_gso = jnp.linalg.norm(grads_gso, axis=-1) | ||
gradnorm_svd = jnp.linalg.norm(grads_svd, axis=-1) | ||
|
||
gradnorm1_gso = jnp.linalg.norm(grads_gso[:, 0:3], axis=-1) | ||
gradnorm2_gso = jnp.linalg.norm(grads_gso[:, 3:6], axis=-1) | ||
|
||
gradnorm1_svd = jnp.linalg.norm(grads_svd[:, 0:3], axis=-1) | ||
gradnorm2_svd = jnp.linalg.norm(grads_svd[:, 3:6], axis=-1) | ||
gradnorm3_svd = jnp.linalg.norm(grads_svd[:, 6:9], axis=-1) | ||
|
||
ratios12_gso = jnp.divide(gradnorm1_gso, gradnorm2_gso) | ||
|
||
ratios12_svd = jnp.divide(gradnorm1_svd, gradnorm2_svd) | ||
ratios13_svd = jnp.divide(gradnorm1_svd, gradnorm3_svd) | ||
ratios23_svd = jnp.divide(gradnorm2_svd, gradnorm3_svd) | ||
|
||
if plot_frames_with_grads: | ||
for r0, r_svd, r_gso, g_svd, g_gso in zip(rotmats, pred_svd, pred_gso, grads_svd, grads_gso): | ||
fig = plt.figure() | ||
ax = fig.add_subplot(111, projection='3d', proj_type="ortho") | ||
g_gso = jnp.c_[g_gso.reshape(3,2), np.zeros(3,)] | ||
r_list = [r0, r_svd, r_gso, -1*g_svd.reshape(3,3), -1*g_gso] | ||
off_list = [jnp.zeros((3,3)), jnp.zeros((3,3)), jnp.zeros((3,3))] + [r_svd, r_gso] | ||
|
||
plot_matrices(ax, r_list, | ||
["rotmat", "svd", "gso", "grad_svd", "grad_gso"], | ||
off_list) | ||
plt.show() | ||
|
||
############################################################################### | ||
# COMPUTE HESSIANS | ||
############################################################################### | ||
|
||
hessmats_gso = jax.vmap(hess_gso, (0, 0))(rotmats, predmats[:,:,:2].reshape(N,6)) | ||
hessmats_svd = jax.vmap(hess_svd, (0, 0))(rotmats, predmats.reshape(N,9)) | ||
|
||
eig_gso = jnp.sort(jax.vmap(jnp.linalg.eig)(hessmats_gso)[0], axis=-1) | ||
eig_svd = jnp.sort(jax.vmap(jnp.linalg.eig)(hessmats_svd)[0], axis=-1) | ||
|
||
condnums_gso = jnp.divide(jnp.abs(eig_gso[:,-1]), jnp.abs(eig_gso[:,0])) | ||
condnums_svd = jnp.divide(jnp.abs(eig_svd[:,-1]), jnp.abs(eig_svd[:,0])) | ||
|
||
|
||
############################################################################### | ||
# ANALYSE GRADIENTS & HESSIANS | ||
############################################################################### | ||
|
||
df = pd.DataFrame({'loss': np.r_[loss_svd, loss_gso].flatten(), | ||
'gradnorm': np.r_[gradnorm_svd, gradnorm_gso].flatten(), | ||
'ratios12': np.r_[ratios12_svd, ratios12_gso].flatten(), | ||
'ratios13': np.r_[ratios13_svd, [None] * rot_gso.shape[0]].flatten(), | ||
'ratios23': np.r_[ratios23_svd, [None] * rot_gso.shape[0]].flatten(), | ||
'condnums': np.r_[condnums_svd, condnums_gso].flatten(), | ||
'eigmin': np.r_[eig_svd[:,0], eig_gso[:,0]].flatten(), | ||
'eigmax': np.r_[eig_svd[:,-1], eig_gso[:,-1]].flatten(), | ||
}) | ||
|
||
df['Label'] = ['SVD'] * rot_svd.shape[0] + ['GSO'] * rot_gso.shape[0] | ||
|
||
def boxplot_labels(labels): | ||
fig, axs = plt.subplots(1, len(labels), sharey=True) | ||
for i in range(len(labels)): | ||
# sns.histplot(data=df, x=labels[i], hue="Label", bins=50, ax=axs[i]) | ||
sns.boxplot(x="Label", y=labels[i], data=df, ax=axs[i], showfliers=True) | ||
# sns.violinplot(x="Label", y=labels[i], data=df, ax=axs[i]) | ||
axs[i].set_xlabel(labels[i]) | ||
axs[i].set_yscale("log") | ||
|
||
axs[0].set_ylabel("Count") | ||
plt.tight_layout() | ||
plt.show() | ||
|
||
def plot_2D(labelx, labely, legend=None, plottype="kde"): | ||
assert len(labelx) == len(labely) == len(legend), \ | ||
"labelx, labely and legend must have the same length" | ||
n = len(labelx) | ||
fig, axs = plt.subplots(2, n, sharex=True, sharey=True) | ||
|
||
labels = ["SVD", "GSO"] | ||
if plottype == "scatter" and legend is not None: | ||
for i in range(2): | ||
for j in range(n): | ||
idx = i*n+j | ||
if idx < 4: | ||
points = axs[i, j].scatter(df[labelx[j]][df['Label'] == labels[i]], | ||
df[labely[j]][df['Label'] == labels[i]], | ||
c=df[legend[j]][df['Label'] == labels[i]], | ||
s=20, cmap="Spectral_r", | ||
norm=matcolors.LogNorm()) # set style options | ||
axs[i, j].set_xscale('log') | ||
axs[i, j].set_yscale('log') | ||
axs[i, j].set_xlabel(labelx[j]) | ||
axs[i, j].set_ylabel(labely[j]) | ||
axs[i, j].set_title(f"{labels[i]}") | ||
plt.colorbar(points, label=legend[j]) | ||
|
||
elif plottype == "kde": | ||
for i in range(2): | ||
for j in range(n): | ||
idx = i * n + j | ||
if idx < 4: | ||
sns.kdeplot(x=df[labelx[j]][df['Label'] == labels[i]], | ||
y=df[labely[j]][df['Label'] == labels[i]], | ||
#norm=matcolors.LogNorm(), | ||
ax=axs[i, j], | ||
cmap="Spectral_r", #cmap="Reds",'Greens',# | ||
fill=True, | ||
levels=30, | ||
log_scale=(False, True), | ||
cbar=True, | ||
clip=((None, None), (None, None)), | ||
) | ||
axs[i, j].set_xlabel(labelx[j]) | ||
axs[i, j].set_ylabel(labely[j]) | ||
axs[i, j].set_title(f"{labels[i]}") | ||
axs[i, j].grid(axis='y', linestyle='--') | ||
|
||
else: | ||
axs[i, j].axis('off') | ||
|
||
plt.show() | ||
|
||
def plot_2D_paper(): | ||
|
||
labels = ["GSO", "SVD", "SVD", "SVD"] | ||
dataname = ["ratios12", "ratios12", "ratios13", "ratios23"] | ||
datalabels = [r"$\|\nabla_{v_1}L\| / \|\nabla_{v_2}L\|$", | ||
r"$\|\nabla_{m_1}L\| / \|\nabla_{m_2}L\|$", | ||
r"$\|\nabla_{m_1}L\| / \|\nabla_{m_3}L\|$", | ||
r"$\|\nabla_{m_2}L\| / \|\nabla_{m_3}L\|$"] | ||
|
||
n = len(labels) | ||
|
||
fig, axs = plt.subplots(1, n, sharey=True) | ||
axs = axs.ravel() | ||
|
||
for i in range(n): | ||
cnt = sns.kdeplot(x=df['loss'][df['Label'] == labels[i]], | ||
y=df[dataname[i]][df['Label'] == labels[i]], | ||
#norm=matcolors.LogNorm(), | ||
ax=axs[i], | ||
cmap='coolwarm', #'Greens',#"Spectral_r", #cmap="Reds", | ||
fill=True, | ||
levels=50, | ||
log_scale=(False, True), | ||
#cbar=True, | ||
clip=((None, None), (None, None)), | ||
antialiased=True | ||
) | ||
for c in cnt.collections: | ||
c.set_edgecolor("face") | ||
|
||
axs[i].set_ylim(0.08, 20) | ||
axs[i].set_xlabel('L2 loss') | ||
axs[i].set_ylabel(None) | ||
axs[i].set_title(datalabels[i]) | ||
plt.text(.02, .98, labels[i], | ||
ha='left', va='top', | ||
fontsize=14, color='black', | ||
transform=axs[i].transAxes) | ||
axs[i].grid(axis='y', linestyle='--') | ||
if i == 0: | ||
axs[i].set_facecolor("gray") | ||
|
||
plt.show() | ||
|
||
if plot_ratios: | ||
plot_2D_paper() | ||
#plot_2D(["loss", "loss", "loss"], | ||
# ["ratios12", "ratios13", "ratios23"], | ||
# ["condnums", "condnums", "condnums"], | ||
# plottype="kde") | ||
|
||
if plot_grads: | ||
boxplot_labels(["ratios12", "ratios13", "ratios23"]) | ||
|
||
if plot_condnums: | ||
boxplot_labels(["condnums", "eigmax"]) |