You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Hi, I trained a model and it is unable to load it. I think this might get solved if we can pass AutoModel and AutoTokenizer objects using transformers so that it can handle new models.
aug = naw.ContextualWordEmbsAug(
----> 4 model_path=model_name, action="substitute")
3 frames
/usr/local/lib/python3.6/dist-packages/nlpaug/augmenter/word/context_word_embs.py in init(self, model_path, action, temperature, top_k, top_p, name, aug_min, aug_max, aug_p, stopwords, skip_unknown_word, device, force_reload, optimize, stopwords_regex, verbose)
91 self.model = self.get_model(
92 model_path=model_path, device=device, force_reload=force_reload, temperature=temperature, top_k=top_k,
---> 93 top_p=top_p, optimize=optimize)
94 # Override stopwords
95 if stopwords is not None and self.model_type in ['xlnet', 'roberta']:
Hi, I trained a model and it is unable to load it. I think this might get solved if we can pass AutoModel and AutoTokenizer objects using transformers so that it can handle new models.
aug = naw.ContextualWordEmbsAug(
----> 4 model_path=model_name, action="substitute")
3 frames
/usr/local/lib/python3.6/dist-packages/nlpaug/augmenter/word/context_word_embs.py in init(self, model_path, action, temperature, top_k, top_p, name, aug_min, aug_max, aug_p, stopwords, skip_unknown_word, device, force_reload, optimize, stopwords_regex, verbose)
91 self.model = self.get_model(
92 model_path=model_path, device=device, force_reload=force_reload, temperature=temperature, top_k=top_k,
---> 93 top_p=top_p, optimize=optimize)
94 # Override stopwords
95 if stopwords is not None and self.model_type in ['xlnet', 'roberta']:
/usr/local/lib/python3.6/dist-packages/nlpaug/augmenter/word/context_word_embs.py in get_model(cls, model_path, device, force_reload, temperature, top_k, top_p, optimize)
269 def get_model(cls, model_path, device='cuda', force_reload=False, temperature=1.0, top_k=None, top_p=0.0,
270 optimize=None):
--> 271 return init_context_word_embs_model(model_path, device, force_reload, temperature, top_k, top_p, optimize)
/usr/local/lib/python3.6/dist-packages/nlpaug/augmenter/word/context_word_embs.py in init_context_word_embs_model(model_path, device, force_reload, temperature, top_k, top_p, optimize)
28 model = nml.Roberta(model_path, device=device, temperature=temperature, top_k=top_k, top_p=top_p)
29 elif 'bert' in model_path:
---> 30 model = nml.Bert(model_path, device=device, temperature=temperature, top_k=top_k, top_p=top_p)
31 elif 'xlnet' in model_path:
32 model = nml.XlNet(model_path, device=device, temperature=temperature, top_k=top_k, top_p=top_p, optimize=optimize)
/usr/local/lib/python3.6/dist-packages/nlpaug/model/lang_models/bert.py in init(self, model_path, temperature, top_k, top_p, device)
21 self.model_path = model_path
22
---> 23 self.tokenizer = BertTokenizer.from_pretrained(model_path)
24 self.model = BertForMaskedLM.from_pretrained(model_path)
25
NameError: name 'BertTokenizer' is not defined
The text was updated successfully, but these errors were encountered: