Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Fix typo in 0.1 Spark Streaming 实现思路与模块概述.md #23

Merged
merged 1 commit into from
Oct 19, 2016
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
Expand Up @@ -153,7 +153,7 @@ Spark Streaming 与 Spark Core 的关系可以用下面的经典部件图来表
- 如果数据很细小,就需要 `BlockGenerator` 攒多条数据成一块(4a)、然后再成块存储(4b 或 4c)
- 反之就不用攒,直接成块存储(4b 或 4c)

- 这里 Spark Streaming 目前支持两种成块存储方式,一种是由 `blockManagerskManagerBasedBlockHandler` 直接存到 executor 的内存或硬盘,另一种由 `WriteAheadLogBasedBlockHandler` 是同时写 WAL(4c) 和 executor 的内存或硬盘
- 这里 Spark Streaming 目前支持两种成块存储方式,一种是由 `BlockManagerBasedBlockHandler` 直接存到 executor 的内存或硬盘,另一种由 `WriteAheadLogBasedBlockHandler` 是同时写 WAL(4c) 和 executor 的内存或硬盘

- (5) 每次成块在 executor 存储完毕后,`ReceiverSupervisor` 就会及时上报块数据的 meta 信息给 driver 端的 `ReceiverTracker`;这里的 meta 信息包括数据的标识 id,数据的位置,数据的条数,数据的大小等信息;

Expand Down